Torsten Hothorn and Kurt Hornik and Mark A. van de Wiel and Achim Zeileis

A Lego System for Conditional Inference

Original Citation:

Hothorn, Torsten and Hornik, Kurt ORCID: https://orcid.org/0000-0003-4198-9911 and Wiel, Mark A. van de and Zeileis, Achim

(2005)

A Lego System for Conditional Inference.

This version is available at: https://epub.wu.ac.at/886/

Available in ePubWU: December 2005

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU.

http://epub.wu.ac.at/
A Lego System for Conditional Inference

Torsten Hothorn
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Kurt Hornik
Wirtschaftsuniversität Wien

Mark A. van de Wiel
Eindhoven University of Technology

Achim Zeileis
Wirtschaftsuniversität Wien

Abstract

Conditioning on the observed data is an important and flexible design principle for statistical test procedures. Although generally applicable, permutation tests currently in use are limited to the treatment of special cases, such as contingency tables or K-sample problems. A new theoretical framework for permutation tests opens up the way to a unified and generalized view. We argue that the transfer of such a theory to practical data analysis has important implications in many applications and requires tools that enable the data analyst to compute on the theoretical concepts as closely as possible. We re-analyze four data sets by adapting the general conceptual framework to these non-standard inference procedures and utilizing the coin add-on package in the R system for statistical computing to show what one can gain from going beyond the ‘classical’ test procedures.

Keywords: permutation tests, multiple testing, independence, software.

1. Introduction

The distribution of a test statistic under the circumstances of a certain null hypothesis clearly depends on the unknown distribution of the data and thus is unknown as well. Two concepts are commonly applied to dispose of this dependency. Unconditional tests impose assumptions on the distribution of the data such that the null distribution of a test statistic can be derived analytically. In contrast, conditional tests replace the unknown null distribution by the conditional null distribution, i.e., the distribution of the test statistic given the observed data. The latter approach is known as permutation testing and was developed by R. A. Fisher more than 70 years ago (Fisher 1935). The pros and cons of both approaches in different fields of application have been widely discussed (e.g. by Ludbrook and Dudley 1998; Berger 2000; Shuster 2005). Here, we focus on the practical aspects of permutation testing rather than dealing with its methodological foundations.

For the construction of permutation tests it is common exercise to ‘recycle’ test statistics well known from the unconditional world, such as linear rank statistics, ANOVA F statistics or χ^2 statistics for contingency tables, and to replace the unconditional null distribution with the conditional distribution of the test statistic under the null hypothesis (Edgington 1987; Good 2000; Pesarin 2001; Ernst 2004). Because the choice of the test statistic is the only ‘degree of freedom’ for the data analyst, the classical view on permutation tests requires a ‘cook book’ classification of inference problems (categorical data analysis, multivariate analysis, K-sample location problems, correlation, etc.), each being associated with a ‘natural’ form of the test statistic.

The theoretical advances of the last decade (notably Strasser and Weber 1999; Janssen and Pauls 2003) give us a much better understanding of the strong connections between the ‘classical’ permutation tests defined for different inference problems. As we will argue in this paper, the new theoretical tools open up the way to a simple construction principle for test procedures in new and
challenging inference problems. Especially attractive for this purpose is the theoretical framework for permutation tests developed by Strasser and Weber (1999). This unifying theory is based on a flexible form of multivariate linear statistics for the general independence problem.

This framework provides us with a conceptual Lego system for the construction of permutation tests consisting of Lego bricks for linear statistics suitable for different inference problems (contingency tables, multivariate problems, etc.), different forms of test statistics, such as quadratic forms for global tests or test statistics suitable for multiple comparison procedures, and several ways to compute or approximate the conditional null distribution. The classical procedures, such as a permutation t test, are part of this framework and, even more interestingly, new test procedures can be embedded into the same theory whose main ideas are sketched in Section 2.

Currently, the statistician’s toolbox consists of rather inflexible spanners, such as the Wilcoxon-Mann-Whitney test for comparing two distributions or the Cochran-Mantel-Haenszel χ^2 test for independence in contingency tables. With this work, we add an adjustable spanner to the statistician’s toolbox which helps to address both the common as well as new or unusual inference problems with the appropriate conditional test procedures. In the main part of this paper we show how one can construct and implement permutation tests ‘on the fly’ by plugging together Lego bricks for the multivariate linear statistic, the test statistic and the conditional null distribution, both conceptually and practically by means of the coin add-on package (Hothorn, Hornik, van de Wiel, and Zeileis 2005) in the R system for statistical computing (R Development Core Team 2005).

2. A conceptual Lego system

To fix notations, we assume that we are provided with observations (Y_i, X_i) for $i = 1, \ldots, n$. The variables Y and X from sample spaces \mathcal{Y} and \mathcal{X} may be measured at arbitrary scales and may be multivariate as well. We are interested in testing the null hypothesis of independence of Y and X

$$H_0 : D(Y|X) = D(Y)$$

against arbitrary alternatives. Strasser and Weber (1999) suggest to derive scalar test statistics for testing H_0 from multivariate linear statistics of the form

$$T = \text{vec} \left(\sum_{i=1}^{n} g(X_i) h(Y_i)^\top \right) \in \mathbb{R}^{pq \times 1}.$$

Here, $g : \mathcal{X} \to \mathbb{R}^{pq \times 1}$ is a transformation of the X measurements and $h : \mathcal{Y} \to \mathbb{R}^{q \times 1}$ is called influence function. The function $h(Y_i) = h(Y_i, (Y_1, \ldots, Y_n))$ must depend on the responses (Y_1, \ldots, Y_n) in a permutation symmetric way. We will give several examples how to choose g and h for specific inference problems in Section 3.

The distribution of T depends on the joint distribution of Y and X, which is unknown under almost all practical circumstances. At least under the null hypothesis one can dispose of this dependency by fixing X_1, \ldots, X_n and conditioning on all possible permutations S of the responses Y_1, \ldots, Y_n.

The conditional expectation $\mu \in \mathbb{R}^{pq \times 1}$ and covariance $\Sigma \in \mathbb{R}^{pq \times pq}$ of T under H_0 given all permutations $\sigma \in S$ of the responses are derived by Strasser and Weber (1999):
where \otimes denotes the Kronecker product, and the conditional expectation of the influence function is $\mathbb{E}(h|S) = n^{-1} \sum_i h(Y_i)$ with corresponding $q \times q$ covariance matrix

$$\mathbb{V}(h|S) = n^{-1} \sum_i (h(Y_i) - \mathbb{E}(h|S))(h(Y_i) - \mathbb{E}(h|S))^\top.$$

The key step for the construction of test statistics based on the multivariate linear statistic T is its standardization utilizing the conditional expectation μ and covariance matrix Σ. Univariate test statistics c mapping a linear statistic $T \in \mathbb{R}^{p \times 1}$ into the real line can be of arbitrary form. An obvious choice is the maximum of the absolute values of the standardized linear statistic

$$c_{\text{max}}(T, \mu, \Sigma) = \max \frac{T - \mu}{\text{diag}(\Sigma)^{1/2}}.$$

A prominent alternative are quadratic forms $c_{\text{quad}}(T, \mu, \Sigma) = (T - \mu)\Sigma^+(T - \mu)^\top$ involving the Moore-Penrose inverse Σ^+ of Σ.

The conditional distribution $P(c(T, \mu, \Sigma) \leq z|S)$ is the number of permutations $\sigma \in S$ of the data with corresponding test statistic not exceeding z divided by the total number of permutations in S. For some special forms of the multivariate linear statistic the exact distribution of some test statistics is tractable for small and moderate sample sizes. Conditional Monte-Carlo procedures (‘resampling’) can always be used to approximate the exact distribution up to any desired accuracy by evaluating the test statistic for a random sample from the set of all permutations S. It is important to note that in the presence of a grouping of the observations into blocks, only permutations within blocks are eligible and that the conditional expectation and covariance matrix need to be computed separately for each block.

Less well known is the fact that the conditional distribution can be approximated by its limiting distribution under all circumstances. Strasser and Weber (1999) showed in their Theorem 2.3 that the conditional distribution of linear statistics T with conditional expectation μ and covariance Σ tends to a multivariate normal distribution with parameters μ and Σ as $n \to \infty$. Thus, the asymptotic conditional distribution of test statistics of the form c_{max} is normal and can be computed directly in the univariate case ($pq = 1$) and by numerical algorithms in the multivariate case (e.g., using the quasi-randomized Monte-Carlo procedures of Genz 1992). For quadratic forms c_{quad} which follow a χ^2 distribution with degrees of freedom given by the rank of Σ (e.g. Theorem 6.20, Rasch 1995), exact probabilities can be computed efficiently.

3. Playing Lego

The Lego system sketched in the previous section consists of Lego bricks for the multivariate linear statistic T, namely the transformation g and influence function h, multiple forms of the test statistic c and several choices of approximations of the null distribution. In this section, we will show how classical procedures, starting with the conditional Kruskal-Wallis test and the Cochran-Mantel-Haenszel test, can be embedded into this general theory and, much more interesting from our point of view, how new conditional test procedures can be constructed conceptually and practically. Therefore, each inference problem comes with R code performing the appropriate conditional test using the coin functionality which enables the data analyst to benefit from this simple methodology in every day’s data analysis. All analyses are reproducible from the coin package vignette available from http://CRAN.R-project.org/.

Genetic Components of Alcoholism. Various studies have linked alcohol dependence phenotypes to chromosome 4. One candidate gene is $NACP$ (non-amyloid component of plaques), coding for alpha synuclein. Bönisch, Lederer, Reulbach, Hothorn, Kornhuber, and Bleich (2005) found longer alleles of $NACP$-REP1 in alcohol-dependent patients compared with healthy controls and report that the allele lengths show some association with levels of expressed alpha synuclein mRNA (see Figure 1).
Our first attempt to test for different levels of gene expression in the three groups is the classical Kruskal-Wallis test. Here, the transformation g is a dummy coding of the allele length ($g(X_i) = (0, 1, 0)^\top$ for intermediate length, for example) and the value of the influence function $h(Y_i)$ is the rank of Y_i among the ranks of Y_1, \ldots, Y_n. Thus, the linear statistic T is the vector of rank sums in each of the three groups and the test statistic is a quadratic form $(T - \mu)\Sigma^+(T - \mu)^\top$ utilizing the conditional expectation μ and covariance matrix Σ.

In order to compute the linear statistic we need to define an influence function performing a ranking of the expression levels. Under the null hypothesis, the c_{quad}-type Kruskal-Wallis test statistic tends to a χ^2 distribution with two degrees of freedom (the rank of the conditional covariance matrix Σ) from which a p-value can be computed. In R, the function \texttt{independence_test} takes a formula describing the inference problem, i.e., the independence of expression levels (\texttt{elevel}) and allele lengths (\texttt{alength}), the influence function is specified via the \texttt{ytrafo} argument and we ask for a c_{quad}-type test statistic (\texttt{teststat}) as follows:

\begin{verbatim}
R> independence_test(elevel ~ alength, data = alpha, ytrafo = function(data) + trafo(data, numeric_trafo = rank), teststat = "quadtype")
\end{verbatim}

Asymptotic General Independence Test

data: elevel by groups short, intermediate, long
T = 8.8302, df = 2, p-value = 0.01209

The results are equivalent to the results reported by \texttt{kruskal_test}, the ‘classical’ interface to the Kruskal-Wallis test in R

\begin{verbatim}
R> kruskal.test(elevel ~ alength, data = alpha)
\end{verbatim}

Kruskal-Wallis rank sum test

data: elevel by alength
Kruskal-Wallis chi-squared = 8.8302, df = 2, p-value = 0.01209
However, going beyond the functionality implemented in `kruskal.test` would require extensive programming but is easily possible with the `coin` functionality being available. For example, ignoring the ordinal structure of the allele length is only suboptimal, especially when we have an ordered alternative in mind. Ordinal variables can be incorporated into the general framework via linear-by-linear association tests (Agresti 2002). When X is measured at K levels associated with a score vector $\gamma \in \mathbb{R}^{K \times 1}$, the linear statistic reads

$$T_\gamma = \text{vec} \left(\sum_{i=1}^{n} \gamma^T g(X_i) h(Y_i)^T \right).$$

Here, the mid-points of the intervals used to categorize the allele lengths are a possible choice for the score vector γ and the linear-by-linear association test can be performed by attaching the scores to the variable `alength`:

```r
R> independence_test(elevel ~ alength, data = alpha, ytrafo = function(data) +   trafo(data, numeric_trafo = rank), scores = list(alength = c(2, 7, 11)))
```

Asymptotic General Independence Test

data: elevel by groups short < intermediate < long

$T = 2.9263$, p-value $= 0.003430$

The smaller p-value corresponds well with Figure 1, i.e., the impression that the expression levels increase with increasing allele lengths.

Smoking and Alzheimer’s Disease. Salib and Hillier (1997) report results of a case-control study on Alzheimer’s disease and smoking behavior of 198 patients suffering from Alzheimer’s disease and 164 controls. The data shown in Table 1 have been re-constructed from Table 4 in Salib and Hillier (1997) and are depicted in Figure 2. The authors conclude that ‘cigarette smoking is less frequent in men with Alzheimer’s disease.’

We are interested to assess whether there is any association between smoking and Alzheimer’s (or other dementia) diseases and, in a second step, how a potential association can be described. First, the global null hypothesis of independence between smoking behavior and disease status for both females and males, i.e., treating gender as a block factor, can be tested with a c-quad-type test statistic, i.e., the Cochran-Mantel-Haenszel test:

```r
R> it_alz <- independence_test(disease ~ smoking | gender, data = alzheimer, +   teststat = "quadtype")
```

Table 1: `alzheimer` data: Smoking and Alzheimer’s disease.

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td><10</td>
</tr>
<tr>
<td>Alzheimer’s</td>
<td>91</td>
<td>7</td>
</tr>
<tr>
<td>Other dementias</td>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td>Other diagnoses</td>
<td>80</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1: Smoking and Alzheimer’s disease.
A Lego System for Conditional Inference

Figure 2: alzheimer data: Association of smoking behavior and disease status stratified by gender.

R> it_alz

Asymptotic General Independence Test
data: disease by
groups None, <10, 10-20, >20
stratified by gender
T = 23.3163, df = 6, p-value = 0.0006972

which suggests that there is a clear deviation from independence. By default, the influence function \(h \) and the transformation \(g \) are dummy codings of the disease status \(Y \) and the smoking behavior \(X \), i.e., \(h(Y_i) = (1, 0, 0)^\top \) and \(g(X_i) = (1, 0, 0, 0)^\top \) for a non-smoking Alzheimer patient. Consequently, the linear multivariate statistic \(T \) based on \(g \) and \(h \) is the contingency table of both variables

\[
\begin{array}{ccc}
\text{Alzheimer's} & \text{Other dementias} & \text{Other diagnoses} \\
\text{None} & 126 & 79 & 104 \\
<10 & 15 & 8 & 5 \\
10-20 & 30 & 33 & 47 \\
>20 & 27 & 44 & 20 \\
\end{array}
\]

with conditional expectation \(\text{expectation(it_alz)} \) and conditional covariance \(\text{covariance(it_alz)} \) which are available for standardizing the contingency table \(T \). The conditional distribution is approximated by its limiting \(\chi^2 \) distribution by default.

Given that there is significant departure from independence, we further investigate the structure of association between smoking and Alzheimer’s disease. First we assess for which gender the violation of independence occured

R> females <- alzheimer$gender == "Female"
R> pvalue(independence_test(disease ~ smoking, data = alzheimer, + subset = females, teststat = "quadtype"))

[1] 0.09060652
R> pvalue(independence_test(disease ~ smoking, data = alzheimer, + subset = !females, teststat = "quadtype"))

[1] 3.169418e-06

where it turns out that the association is due to the male patients only (see also Figure 2). Thus, we focus on the male patients in the following. Furthermore, a c_{quad}-type test statistic is not particularly useful for gaining insight into the association structure of contingency tables because the contributions of all cells are collapsed in such a quadratic form. Instead, we define the test statistic as the maximum of the standardized contingency table via

R> it_alzmax <- independence_test(disease ~ smoking, data = alzheimer, + subset = !females, teststat = "maxtype")
R> it_alzmax

Asymptotic General Independence Test
data: disease by groups None, <10, 10-20, >20
T = 4.9504, p-value = 1.148e-05

where the underlying standardized contingency table highlights the cells with deviations from independence

R> statistic(it_alzmax, "standardized")

<table>
<thead>
<tr>
<th></th>
<th>Alzheimer's</th>
<th>Other dementias</th>
<th>Other diagnoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2.5900465</td>
<td>-2.340275</td>
<td>-0.1522407</td>
</tr>
<tr>
<td><10</td>
<td>2.9713093</td>
<td>-2.056864</td>
<td>-0.8446233</td>
</tr>
<tr>
<td>10-20</td>
<td>-0.7765307</td>
<td>-1.237441</td>
<td>2.1146396</td>
</tr>
<tr>
<td>>20</td>
<td>-3.6678046</td>
<td>4.950373</td>
<td>-1.5303056</td>
</tr>
</tbody>
</table>

This leads to the impression that heavy smokers suffer less frequently from Alzheimer’s disease but more frequently from other dementias than expected under independence. However, interpreting the standardized contingency table requires knowledge about the distribution of the standardized statistics, e.g., via an approximation of the 95% quantile of the permutation null distribution which is available from

R> qperm(it_alzmax, 0.95)

[1] 2.813175

or alternatively (and more conveniently) by switching to p-values adjusted for multiple testing:

R> pvalue(it_alzmax, method = "single-step")

<table>
<thead>
<tr>
<th></th>
<th>Alzheimer's</th>
<th>Other dementias</th>
<th>Other diagnoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.092374157</td>
<td>1.707036e-01</td>
<td>0.9999984</td>
</tr>
<tr>
<td><10</td>
<td>0.031734006</td>
<td>3.066296e-01</td>
<td>0.9719409</td>
</tr>
<tr>
<td>10-20</td>
<td>0.981658513</td>
<td>8.419042e-01</td>
<td>0.2751252</td>
</tr>
<tr>
<td>>20</td>
<td>0.002635631</td>
<td>2.814171e-05</td>
<td>0.6615635</td>
</tr>
</tbody>
</table>

These results support the conclusion that the rejection of the null hypothesis of independence is due to a large number of patients with other dementias and a small number with Alzheimer’s disease in the heavy smoking group. In addition, there is some evidence that, for the small group of men smoking less than ten cigarettes per day, the reverse association is true.
Photocarcinogenicity Experiments. The effect on tumor frequency and latency in photocarcinogenicity experiments, where carcinogenic doses of ultraviolet radiation (UVR) are administered, are measured by means of (at least) three response variables: the survival time, the time to first tumor and the total number of tumors of animals in different treatment groups. The main interest is testing the global null of no treatment effect with respect to any of the three responses survival time, time to first tumor or number of tumors (Molefe, Chen, Howard, Miller, Sambuco, Forbes, and Kodell 2005, analyze the detection time of tumors in addition, this data is not given here). In case the global null hypothesis can be rejected, the deviations from the partial hypotheses are of special interest.

Molefe et al. (2005) report data of an experiment where 108 animals were exposed to different levels of UVR exposure (group A: topical vehicle and 600 Robertson–Berger units of UVR, group B: no topical vehicle and 600 Robertson–Berger units of UVR and group C: no topical vehicle and 1200 Robertson–Berger units of UVR). The data are taken from Tables 1 to 3 in Molefe et al. (2005), where a parametric test procedure is proposed. Figure 3 depicts the group effects for all three response variables.

First, we construct a global test for the null hypothesis of independence of treatment and all three response variables. A cmax-type test based on the standardized multivariate linear statistic and an approximation of the conditional distribution utilizing the asymptotic distribution simply reads

\[
\text{R}\texttt{> it_ph} \leftarrow \text{independence_test(}\text{Surv(time, event) + Surv(dmin, tumor) + ntumor ~ group, data = photocar)}
\]

R> it_ph

Asymptotic General Independence Test

data: Surv(time, event), Surv(dmin, tumor), ntumor by groups A, B, C
T = 7.0777, p-value = 7.378e-12

Here, the influence function \(h \) consists of the logrank scores of the survival time and time to first tumor as well as the number of tumors, i.e., for the first animal in the first group \(h(Y_1) = (-1.08, -0.56, 5)^T \) and \(g(X_1) = (1, 0, 0)^T \). The multivariate statistic is the sum of each of the three elements of the influence function \(h \) in each of the groups, i.e.,
It is important to note that this global test utilizes the complete covariance structure \(\Sigma \) when \(p \)-values are computed via quasi-randomized Monte-Carlo procedures in the multivariate setting (Genz 1992). Alternatively, a test statistic based on the quadratic form \(q_{\text{quad}} \) directly incorporates the covariance matrix and leads to a very similar \(p \)-value.

The deviations from the partial null hypotheses, i.e., independence of each single response and treatment groups, can be inspected by the standardized linear statistic \(T \)

\[
R > \text{statistic(it_ph, type = \"standardized\")}
\]

\[
\begin{array}{ccc}
\text{Surv(time, event) Surv(dmin, tumor) ntumor} \\
\text{A} & -2.327338 & -2.178704 & 0.2642120 \\
\text{B} & -4.750336 & -4.106039 & 0.1509783 \\
\text{C} & 7.077674 & 6.284743 & -0.4151904 \\
\end{array}
\]

or again by means of the corresponding adjusted \(p \)-values

\[
R > \text{pvalue(it_ph, method = \"single-step\")}
\]

\[
\begin{array}{ccc}
\text{Surv(time, event) Surv(dmin, tumor) ntumor} \\
\text{A} & 0.13614 & 0.18955 & 0.99989 \\
\text{B} & 0.00001 & 0.00034 & 1.00000 \\
\text{C} & 0.00000 & 0.00000 & 0.99859 \\
\end{array}
\]

Of course, the goodness of the asymptotic procedure can be checked against the Monte-Carlo approximation which is computed by

\[
R > \text{it <- independence_test(Surv(time, event) + Surv(dmin, tumor) + ntumor ~ group, data = photocar, distribution = approximate(50000))}
R > \text{pvalue(it, method = \"single-step\")}
\]

\[
\begin{array}{ccc}
\text{Surv(time, event) Surv(dmin, tumor) ntumor} \\
\text{A} & 0.13256 & 0.18718 & 0.99992 \\
\text{B} & 0.00000 & 0.00022 & 0.99998 \\
\text{C} & 0.00000 & 0.00000 & 0.99856 \\
\end{array}
\]

The more powerful step-down multiple testing adjusted \(p \)-values (Algorithm 2.8 in Westfall and Young 1993) are

\[
R > \text{pvalue(it, method = \"step-down\")}
\]

\[
\begin{array}{ccc}
\text{Surv(time, event) Surv(dmin, tumor) ntumor} \\
\text{A} & 0.08276 & 0.09858 & 0.95366 \\
\text{B} & 0.00000 & 0.00014 & 0.88706 \\
\text{C} & 0.00000 & 0.00000 & 0.91548 \\
\end{array}
\]

Clearly, the rejection of the global null hypothesis is due to the group differences in both survival time and time to first tumor whereas no treatment effect on the total number of tumors can be observed.
Contaminated Fish Consumption. In the former three applications, pre-fabricated Lego bricks—i.e., standard transformations for \(g \) and \(h \) such as dummy codings, ranks and logrank scores—have been employed. In the third application, we will show how the Lego system can be used to construct new bricks and implement a newly invented test procedure.

Rosenbaum (1994) proposed to compare groups by means of a coherence criterion and studied a dataset of subjects who ate contaminated fish for more than three years in the ‘exposed’ group and a control group. Three response variables are available: the mercury level of the blood, the percentage of cells with structural abnormalities and the proportion of cells with asymmetrical or incomplete-symmetrical chromosome aberrations (see Figure 4). The observations are partially ordered: an observation is said to be smaller than another when all three variables are smaller. The rank score for observation \(i \) is the number of observations that are larger (following the above criterion) than observation \(i \) minus the number of observations that are smaller. The distribution of the rank scores in both groups is to be compared and the corresponding test is called ‘POSET-test’ (partially ordered sets test) and may be viewed as a multivariate form of the Wilcoxon-Mann-Whitney test.

The coherence criterion can be formulated in a simple function

\[
\text{coherence} <- \text{function(data)} \{
+ \quad x \leftarrow \text{t(as.matrix(data))}
+ \quad f \leftarrow \text{function(y) sum(colSums(x<y) == nrow(x)) - sum(colSums(x>y) == nrow(x))}
+ \quad \text{matrix(apply(x, 2, f), ncol = 1)}
+ \}
\]

which is now defined as influence function \(h \) via the \text{ytrafo} argument

\[
\text{R> poset} \leftarrow \text{independence.test(mercury + abnormal + ccells ~ group,}
+ \quad \text{data = mercuryfish}, \text{ytrafo = coherence, distribution = exact()})
\]

Once the transformations \(g \) (a zero-one coding of the exposed and control group) and \(h \) (the coherence criterion) are defined, we enjoy the whole functionality of the framework, including an exact two-sided \(p \)-value

\[
\text{R> pvalue(poset)}
\]

[1] 4.486087e-06
and density (dperm), distribution (pperm) and quantile functions (qperm) of the conditional distribution. When only a small number of observations is available, it might be interesting to compare the exact conditional distribution and its approximation via the limiting distribution. For the mercuryfish data, the relevant parts of both distribution functions are shown in Figure 5. It turns out that using the normal approximation would be sufficient for all practical purposes in this application.

4. Discussion

Conditioning on the observed data is a simple, yet powerful, design principle for statistical tests. Conceptually, one only needs to choose an appropriate test statistic and evaluate it for all admissible permutations of the data (Ernst 2004, gives some examples). In practical set ups, an implementation of this two-step procedure requires a certain amount of programming and computing time. Sometimes, permutation tests are even regarded as being 'computationally impractical' for larger sample sizes (Balkin and Mallows 2001).

The permutation test framework by Strasser and Weber (1999) helps us to take a fresh look at conditional inference procedures and makes at least two important contributions: analytic formulae for the conditional expectation and covariance and the limiting normal distribution of a class of multivariate linear statistics. Thus, test statistics can be defined for appropriately standardized linear statistics and a fast approximation of the conditional distribution is available, especially for large sample sizes.

It is one mission, if not the mission, of statistical computing to transform new theoretical developments into flexible software tools for the data analyst. The coin package is an attempt to translate the theoretical concepts of Strasser and Weber (1999) into software tools preserving the simplicity and flexibility of the theory as closely as possible. With this package, the rather inflexible spanners currently in use, such as wilcox.test for the Wilcoxon-Mann-Whitney test or mantelhaen.test for the Cochran-Mantel-Haenszel \(\chi^2 \) test in S languages and NPAR1WAY for linear rank statistics in SAS (see the Tables in Oster 2002, 2003, for an overview on procedures implemented in StatXact, LogXact, Stata, SAS and Testimate), are extended by independence.test, a much more flexible and adjustable spanner.

But who stands to benefit from such a software infrastructure? We argue that an improved data analysis is possible in cases when the appropriate conditional test is not available from standard software packages. Statisticians can modify existing test procedures or even try new ideas by
A Lego System for Conditional Inference

computing directly on the theory. A high-level Lego system is attractive for both researchers and software developers, because only the transformation g and influence function h need to be newly implemented, but the burden of implementing a Monte-Carlo procedure, or even thinking about asymptotics, is waived.

With a unifying conceptual framework in mind and a software implementation, such as coin, at hand, we are no longer limited to already published and implemented permutation test procedures and are free to define our own transformations and influence functions, can choose several forms of suitable test statistics and utilize several methods for the computation or approximation of the conditional distribution of the test statistic of interest. Thus, the construction of an appropriate permutation test, for both classical and new inference problems, is only a matter of putting together adequate Lego bricks.

References

