
ePubWU Institutional Repository

Rony G. Flatscher

Metamodeling in EIA/CDIF - Meta-Metamodel and Metamodels

Article (Accepted for Publication)
(Refereed)

Original Citation:

Flatscher, Rony G.

(2002)

Metamodeling in EIA/CDIF - Meta-Metamodel and Metamodels.

ACM Transactions on Modelling and Computer Simulation, 12 (4).

pp. 322-342. ISSN 1558-1195

This version is available at: https://epub.wu.ac.at/7427/
Available in ePubWU: January 2020

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates
referee comments.

http://epub.wu.ac.at/

https://epub.wu.ac.at/7427/
http://epub.wu.ac.at/

Metamodeling in EIA/CDIF – Meta-Metamodel and
Metamodels
Rony G. Flatscher

Wirtschaftsuniversität Wien
Augasse 2-6

A-1090 Vienna, Europe

Rony.Flatscher@wu-wien.ac.at

ABSTRACT
This paper introduces the EIA/CDIF set of standards for the
modeling of information systems and its exchange among
computer aided software tools of different vendors. It lays out the
meta-metamodel and the standardized metamodels which get fully
depicted in a hierarchical layout and annotated with the unique
identifiers of all the standardized modeling concepts. The paper
also stresses the fact that EIA/CDIF has been used as the baseline
in the creation of an international standard, the ISO/CDIF set of
models, an ongoing project.

Categories and Subject Descriptors
B.8.m [Miscellaneous]: Design management; D.2.2 [Design
Tools and Techniques]: Computer-aided software engineering
(CASE), Object-oriented design methods; D.2.4
[Software/Program Verification]: Model checking, Validation;
D.2.9 [Management]: Software configuration management;
D.2.10 [Design]: Methodologies; D.2.13 [Reusable Software]:
Domain engineering, Reuse models; H.1.1 [Systems and
Information Theory]: Information theory; H.2.1 [Logical
Design]: Schema and subschema; H.3.1 [Content Analysis and
Indexing]: Dictionaries; I.6.4 [Model Validation and Analysis];
I.6.5 [Model Development]: Modeling methodologies; I.7.2
[Document Preparation]: Format and notation, Languages and
systems; K.6.3 [Software Management]: Software development,
Software maintenance.

General Terms
Management, Documentation, Design, Standardization,
Languages.

Keywords
CDIF, Case Data Interchange Format, EIA, meta-metamodels,
metamodels, languages, system design, clear text encoding.

1. INTRODUCTION
The American industries association „Electronic Industries
Association“ (abbreviated: EIA; since January 1st 1999 it is called
„Electronic Industries Alliance“) started the effort for
standardizing the exchange of model data created with different
computer aided software engineering (abbreviated: CASE) tools
in 1987. The EIA/CDIF (CDIF is an acronym for: „CASE Data
Interchange Format“) standardization group encompassed vendor
companies among others IBM, Platinum, ORACLE, as well as
companies like Aerospatiale and Boeing. This way both the
producers of CASE tools and the users deploying these CASE

tools came together to create the means for exchanging model
data between CASE tools of different vendors. In the average
there were between four and six week-long meetings organized
per year for carrying out the standardization work. In between of
the meetings the draft documents were edited and reviewed at the
subsequent meetings.

In 1991 the first set of standards were issued by EIA/CDIF,
defining an overview of and the framework for the EIA/CDIF
architecture, which basically consisted of the meta-metamodel,
which defines the concepts available for creating EIA/CDIF
metamodels. Such metamodels in turn specify the available
concepts for creating models and as long as the metamodel
definition is shared among CASE tool makers, models being
instances of metamodels can be exchanged. EIA/CDIF
metamodels are created for so-called „subject areas“ like
conceptual data modeling or dataflow modeling with the intention
to capture the core semantics of all modeling variants available for
such an area. It is interesting to note that from the very beginning
the ability to extend EIA/CDIF-compliant metamodels was of
paramount importance to the standardization group.

In 1994 a revised version of the EIA/CDIF meta-metamodel
„Framework for Modeling and Extensibility“ ([7], [20]) together
with a recensioned overview „CASE Data Interchange Format -
Overview“ ([6], [25], [26]) was standardized and drew from the
experiences gained in creating EIA/CDIF metamodels. In addition
a clear-text exchange format was finalized, where the general
rules were layed out in the document „CDIF Transfer Format –
General Rules for Syntaxes“ ([8], [27]), the syntax for such
exchanges was layed out in „SYNTAX.1“ ([9], [28]) and the
encoding in „ENCODING.1“ ([10], [29]).1 In this series of
standards the very first, the founding EIA/CDIF metamodel
„Foundation“ ([11], [30]) was standardized which has to be
referred to in all EIA/CDIF compliant metamodels.

In the subsequent years additional standards were finalized by
EIA/CDIF. In 1995 the „Common Subject Area“ ([12], [31]) was
created, which contains all concepts the EIA/CDIF group thought
that may be applicable to more than one metamodel. The
EIA/CDIF metamodel standard „Data Modeling“ ([13], [32])
covers the subject area of conceptual data modeling, including
complex relationship types. The EIA/CDIF metamodel standard
„Data Flow“ ([14], [33]) defines the concepts available for
creating data flow models and the standardized „Presentation and

1 The number „1“ in the titles for both, the syntax and the
encoding standards is intended to point out that there may be
numerous syntaxes and encodings to exchange the same model
data!

Location Subject Area“ [15] which is concerned with exchanging
graphical representations of models in a three-dimensional space.
In addition to these official standards there exist drafts for the
subject areas „Data Definition“, „Object-oriented Analysis and
Design Core“, „Business Process Modeling“, „State Event
Modeling“, „Project Management Planning and Scheduling“, and
„Computer Aided Control Systems Design“.

In 1997 an additional means for exchanging model data was
created as an EIA/CDIF standard, called „OMG IDL Bindings“
([16], [21]). This particular standard defines CORBA IDL
compliant interfaces for the EIA/CDIF meta-metamodel and the
founding EIA/CDIF metamodel „Foundation“ as well as the rules
for creating the appropriate definitions for additional EIA/CDIF
compliant metamodels. With the help of this standard metamodels
and model data can be distributed. As a result it is possible to
make them available via networks and because of the defined
interfaces to allow for discovering and inspecting metamodel
definitions as well as model data in real time. Because of the
definition of appropriate interfaces it is possible to query and set
model data as well.

Aside from creating the EIA/CDIF standards the different
members of the standardization group established relationships to
different other standardization bodies and groups. One result of
this work yielded an European ECMA standard in 1997: „Portable
Common Tool Environment (PCTE) – Mapping from CASE Data
Interchange Format (CDIF) to PCTE“ [3]. Another very important
official liasion was established with the „Software Engineering
Data Description and Interchange“ (abbreviated: SEDDI) working
group of ISO: ISO/IEC JTC1/SC7/WG11. This particular group
has been working on an international version of EIA/CDIF,
dubbed „ISO/CDIF“. Informal contacts were established with
ANSI (X3L8, X3H4), ECMA (TC33:PCTE), IEEE (P1175), and
OMG (MOF/UML/SMIF which created the XMI set of
standards).

In 1998 EIA/CDIF turned the baseline of its standards and drafts
over to ISO/IEC JTC1/SC7/WG112 and finished its active work
on additional EIA/CDIF standards. All EIA/CDIF standards are
available from EIA.

2. THE EIA/CDIF ARCHITECTURE
The EIA/CDIF architecture follows a four layer scheme as
depicted in table 1 and resembles the architecture which originally
was devised for ANSI‘s „Information Resource Dictionary
System“ [1] and which is being used by OMG’s „Meta Object
Facility“ [34] too.

Table 1: Four-layer architecture

M3 Meta-Metamodel the EIA/CDIF meta-metamodel

M2 Metamodel the EIA/CDIF metamodels
„Foundation“, „Common“, ...

2 In 2000 the working groups 11, 14, 15 and 16 were merged into
a new working group named “ODP and Modelling Languages”,
which has been established as “ISO/IEC JTC1/SC7/WG19” and
has been in operation since November 1st, 2000. The
outstanding standardization work on ISO/CDIF encompasses
the completion of the metamodels “Data Definition”, “State
Transition”, “Data Modeling”, “DataFlow Modeling”.

M1 Model the model, e.g. the process ‚check
reconciliation‘, ...

M0 User data e.g. check # „M0123“, customer
„Waldorf Astoria“, ...

In table 1, starting from the bottom, the ‚M0‘ layer is concerned
with user data, where the valid structure of such data is defined at
the ‚M1‘ level, which therefore can be regarded as the intension
of ‚M0‘ data and is called the ‚model‘. In table 1 the user data
„M0123“ (a value for the attribute ‚check #‘ of a ‚check‘) and the
value „Waldorf Astoria“ (a value for the attribute ‚name‘ of a
‚customer‘) are extensions (instances) of concepts defined in the
model at the ‚M1‘ level. Here, the model at the ‚M1‘ layer
represents the process of ‚check reconciliation‘ and will contain
the exact definitions of the structure of ‚check‘ and ‚customers‘.

This abstraction process is applied to the ‚M1‘, ‚M2‘ and ‚M3‘
layer. The ‚M2‘ level defines the intension for models at the ‚M1‘
level, typically for a specific modeling domain, called ‚subject
area‘ in EIA/CDIF. Because the models of the ‚M2‘ layer describe
the intension of models at the ‚M1‘ layer, the models at ‚M2‘ are
named metamodels (‚models of models‘). In table 1 the
metamodel for the model example could be from the model
domain of ‚business process‘ or ‚workflow modeling‘. The
metamodels ‚Foundation‘, ‚Common‘ are examples of EIA/CDIF
metamodels as are ‚Data Modeling‘ and ‚Dataflow Modeling‘.

The top layer ‚M3‘ is concerned with determining the constructs
available for creating metamodels and represents itself a model of
metamodels. Consequently, it is called the ‚meta-metamodel‘
layer. In EIA/CDIF a version of an extended entity-relationship-
attribute model is used as the meta-metamodel. Therefore the
main building blocks are „entity types“, „relationship types“ and
„attributes“. For the purpose of describing the concepts of the
‚M3‘ layer the meta-metamodel itself is being used, hence the
intension for the meta-metamodel is the ‚M3‘ model itself.

The EIA/CDIF four layer architecture allows for four
intension/extension pairs: M3/M3, M3/M2, M2/M1 and M1/M0.
The standardization efforts of EIA/CDIF are focused on the meta-
metamodel, the metamodels, the extensibility of metamodels and
the exchange of metamodel and model data. Allowing for
extending standardized metamodels is of paramount importance to
EIA/CDIF as it becomes possible to use EIA/CDIF for CASE
tools which do have additional or more semantically refined
concepts than the standards themselves. Yet, tools adhering to the
published standards only are still able to import models based on
extended metamodels as the extensions must be given within the
exchanged data, discarding the unknown metadata and its
instantiation after that process, but keeping the semantically
standardized parts of it.

Conceptually, metamodel data is created by instantiating the meta-
metamodel, model data by instantiating the appropriate
metamodel. EIA/CDIF is not concerned about the ‚M0‘ layer
which would be the result of instantiating the model itself.

EIA/CDIF compliant exchange of model data must adhere to

- the EIA/CDIF meta-metamodel, and

- the fundamental EIA/CDIF metamodel ‚Foundation‘, which
may get refined by means of specialization; the mandatory
usage of this metamodel causes it to become the root of every

EIA/CDIF metamodel and ensures that any such metamodel is
a rooted tree.

2.1 The EIA/CDIF Meta-Metamodel
The EIA/CDIF meta-metamodel realizes the M3 layer of the
EIA/CDIF architecture. It defines the concepts which are
available for creating metamodels and can therefore be regarded
to be the intension of metamodels. If one implements the meta-
metamodel in a (relational, object-oriented) database management
system, it can be used to store the metamodel definitions and
hence may serve as a repository for EIA/CDIF metamodels.

Figure 1 depicts this groundlaying EIA/CDIF meta-metamodel.

Aliases
CDIFMetaIdentifier
Constraints
Description
Name
Usage

CollectableMetaObject

AttributableMetaObject
IsLocalMetaAttributeOf

IsUsedIn

HasSource

HasDestination

0:N

0:N

0:N

0:N

0:N

0:N1:1

1:1

1:1

1:N

HasSubtype
DataType
Domain
IsOptional
Length

MinSourceCard
MaxSourceCard
MinDestCard
MaxDestCard

VersionNumber

Type

MetaObject

SubjectArea

MetaAttribute

MetaEntity MetaRelationship

Figure 1: The EIA/CDIF Meta-Metamodel (M3 layer).

The EIA/CDIF meta-metamodel represents an extended entity-
relationship-attribute-model (cf. [2]). It consists of a
generalization hierarchy with the entity type „MetaObject“ at its
root, specialized attributable entity and relationship types. Entity
types may be abstract or concrete and are represented as
rectangles. In figure 1 concrete entity types which may get
instantiated are depicted with a light gray background. In the
EIA/CDIF standards an entity type at the M3 layer is
synonymously termed „meta-meta-entity“.

Relationship types have a binary multiplicity and allow for
defining participation constraints in the form of cardinalities with
a minimum/maximum notation. They are depicted as arrows
determining the direction in which a fully qualified relationship
type name has to be read. The fully qualified relationship type
name is built by first denoting the name of the source entity type,
followed by a dot, the name of the relationship type followed by a
dot and the name of the destination entity type to which the
arrowhead points to. E.g., the fully qualified name of the
relationship type „IsUsedIn“ therefore is called „0:N
CollectableMetaObject.IsUsedIn.SubjectArea 1:N“. The
minimum/maximum cardinalities of this relationship type has to
be interpreted as: „an instance of type CollectableMetaObject
must participate in at least one relationship of type“ and „an
instance of type SubjectArea may participate in such
relationships“. In the EIA/CDIF standards a relationship type at
the M3 layer is synonymously termed „meta-meta-relationship“.

Entity and relationship types may carry attributes, which may
draw their values according to one of the following pre-defined
data types: BitMap, Boolean, Date, Enumerated, Float, Identifier,
Integer, IntegerList, Point, PointList, String, Text and Time. In the
EIA/CDIF standards an attribute at the M3 layer is synonymously
termed „meta-meta-attribute“. At the M3 layer only meta-meta-
entities may carry attributes.

The following entity types are defined in the EIA/CDIF meta-
metamodel:

- „MetaObject“ (abbreviated: MO): this abstract entity type is
the root entity type and defines those attributes which all
specialized entity types share: Aliases (data type: String),
CDIFMetaIdentifier (mandatory, data type: Identifier),
Constraints (data type: Text), Description (mandatory, data
type: Text), Name (mandatory, data type: Identifier) and
Usage (data type: Text).

- „SubjectArea“ (abbreviated: SA): this entity type represents a
modeling domain and defines the mandatory attribute
VersionNumber (data type: String). In EIA/CDIF the union of
all SubjectAreas yields the conceptual „Integrated Meta-
model“ (abbreviated: IMM). Hence, the relationship type
„IsUsedIn“ serves as a viewing mechanism to extract those
definitions from the IMM which pertain to a specific
SubjectArea.

- „CollectableMetaObject" (abbreviated: CMO): this abstract
entity type allows for relating the collectable entity types to
SubjectAreas via the relationship type „IsUsedIn“. Because of
the participation constraint defined for this relationship type,
Instances of type CollectableMetaObject participate fully in
instances of type IsUsedIn.

- „AttributableMetaObject" (abbreviated: AMO): this entity
type serves as the supertype of „MetaEntity“ and „Meta-
Relationship“. With the help of the relationship type „IsLocal-
MetaAttributeOf" it is possible to assign attributes (entities of
type MetaAttribute) to all AMOs. The relationship type „Has-
Subtype“ allows for subtyping and because of the defined
cardinalities multiple inheritance is available.

- „MetaAttribute" (abbreviated: MA): this entity type allows for
defining attributes which according to the cardinalities given
for the relationship type „HasLocalMetaAttributeOf" must be
related to exactly one instance of type for AttributableMeta-
Object. The following meta-meta-attributes are available:
DataType (mandatory, data type: Enumerated), Domain
(mandatory for Enumerated data types, data type: Text),
IsOptional (data type: Boolean), Length (mandatory for String
data types, data type: Integer).

- „MetaEntity“ (abbreviated: ME): this entity type allows for
defining entity types and defines the attribute Type (data type:
Enumerated).

- „MetaRelationship“ (abbreviated: MR): this entity type allows
for defining relationship types and defines the following
mandatory attributes: MinSourceCard (data type: String),
MaxSourceCard (data type: String), MaxDestCard (data type:
String). Clearly, these attributes allow for determining the
minimum and maximum cardinalities with respect to the
source and destination MetaEntity which each gets defined by
the relationship types „HasSource“ and „HasDestination“. It
follows that the relationship types are binary only and that the

meta-metamodel and metamodels can only be constructed
with binary relationship types which simplifies the
understanding and implementation of M3 and M2 models.3

The following relationship types are defined in the EIA/CDIF
meta-metamodel which do not possess any attributes:

- „IsRelatedTo“ („0:N CollectableMetaObject.IsRelatedTo.-
SubjectArea 1:N"): This relationship type allows for assigning
CMOs to SAs. Conceptually, this is the EIA/CDIF viewing
mechanism. Instances of type CollectableMetaObject
participate fully in this relationship type (participation
constraint: „1:N“). There can be any number of CMOs related
to SAs and a particular instance of type CMO can be related
to more than one SA.

- „IsLocalMetaAttributeOf“ („0:N MetaAttribute.IsLocalMeta-
AttributeOf.AttributableMetaObject 1:1"): This relationship
type allows for assigning MAs to AMOs. Instances of type
MetaAttribute participate fully in this relationship type
(participation constraint: „1:1“). There is no limit imposed on
the number of MAs an AMO may carry.

- „HasSubtype“ („0:N AttributableMetaObject.HasSubtype.-
AttributableMetaObject 0:N"): This relationship type allows
for subtyping of AMOs. According to the cardinalities
multiple inheritance is available, i.e. a specialized AMO may
have more than one AMO as its direct supertype.4 In the case
of multiple inheritance no specific order is implied.

- „HasSource“ („0:N MetaRelationship.HasSource.Meta-
Entity 1:1"): This relationship type allows for determining
which ME serves as the source for a given MR. Each instance
of type MetaRelationship must participate exactly once in
relationships of this type.

- „HasDestination“ („0:N MetaRelationship.HasDestination.-
MetaEntity 1:1"): This relationship type allows for
determining which ME serves as the destination for a given
MR. Each instance of type MetaRelationship must participate
exactly once in relationships of this type.

2.2 Standardized EIA/CDIF Metamodels
All EIA/CDIF compliant metamodels are conceptually
constructed by instantiating the appropriate entity types of the M3
layer. In addition every such metamodel must use the standardized
and fundamental EIA/CDIF metamodel „Foundation“ as a starting
point and refines by the means of specialization directly or
indirectly the entity type „RootEntity“ and the relationship type
„IsRelatedTo“. This ensures that every metamodel represents a
rooted tree.

In this section all standardized EIA/CDIF metamodels are
sketchily introduced by depicting the appropriate generalization

3 Although the definitions of metamodels can only use binary
relationship types, this does not necessarily imply, that models
themselves could not take advantage of n-ary relationship types.
As a matter of fact the EIA/CDIF metamodel standard for
conceptual „Data Modeling“ allows for the definition of n-ary,
even complex relationship types.

4 This merely states that it is possible to simultaneously and
directly re-use the definitions of more than one AMO by the
means of specialization.

hierarchies in a much more informative and concise form than
with the original standards.5 Of course, the detailed definitions of
the EIA/CDIF metamodels need to be taken from the original
standards, which can be ordered from EIA.6

2.2.1 The Fundamental EIA/CDIF Metamodel
„Foundation“
The fundamental EIA/CDIF metamodel „Foundation“ [11]
(abbreviated: FND) consists of an instance of AttributableMeta-
Object, an instance of MetaEntity and an instance of Meta-
Relationship. Figure 2 depicts this metamodel.

CDIFIdentifier
DateCreated
TimeCreated
DateUpdated
TimeUpdated

IsRelatedTo (MR)

0:N
0:N

RootObject (AMO)

RootEntity (ME)

Figure 2: The fundamental EIA/CDIF metamodel
„Foundation“.

„RootObject“ is the sole instance of AttributableMetaObject and
forms the root of this metamodel and defines those attributes
which all specialized AttributableMetaObjects share:
CDIFIdentifier (mandatory, data type: Identifier), DateCreated
(data type: Date), TimeCreated (data type: Time), DateUpdated
(data type: Date) and TimeUpdated (data type: Time). It is
represented as a rectangle. The mandatory attribute CDIF-
Identifier serves as a surrogate for uniquely identifying all
AttributableMetaObjects.

„RootEntity“ is an instance of MetaEntity and represents an entity
type at the M2 layer. It and all of its subtypes are represented as
rectangles. In the EIA/CDIF standards an entity type at the M2
layer is synonymously termed „meta-entity“.

„IsRelatedTo“ is an instance of MetaRelationship and represents
a relationship type at the M2 layer, although it is an instance of an
entity type at a higher level (M3). It and all of its subtypes are
represented as arrows. In the EIA/CDIF standards a relationship
type at the M2 layer is synonymously termed „meta-relationship“.

5 The structural analysis of the standardized EIA/CDIF
metamodels was originally carried out by the author for [23], all
of the generalization hierarchies which are given below are
excerpted from it.

6 Although [23] comprehensively analyses and documents
EIA/CDIF, the book is written in German. Yet, in the context of
the work for this book the original standardization text was
processed and an HTML-rendering created which can be found
in [37]. Yet, as there is some graphical documentation missing
from the original standards, one needs to get them from EIA
(this is especially true for EIA/CDIF’s conceputal „Data
Modeling“ metamodel which employs exclusive relationship
types that are documented graphically only, [23], pp356-383) in
order to be able to state „full compliance with the EIA/CDIF
standard“.

Every EIA/CDIF compliant metamodel will have to at least
specialize this fundamental metamodel by refining the
fundamental M2-entity type RootEntity and M2-relationship type
IsRelatedTo.

This particular metamodel consists of 8 CollectableMetaObjects;
specifically: 1 AttributableMetaObject, 1 MetaEntity, 1 Meta-
Relationship and 5 MetaAttributes. A list representation of the
generalization hierarchy is given in figure 3.

1. RootObject *1*

1. RootEntity *2*
2. 0:N RootEntity.IsRelatedTo.RootEntity 0:N *3*

Figure 3: Generalization Hierarchy of the Metamodel
„Foundation“.7

2.2.2 Standardized „Semantic“ EIA/CDIF
Metamodels
All EIA/CDIF metamodels of this section are regarded to be of
„semantic“ nature, defining concepts for a specific subject area
(modeling domain). In this respect these metamodels can be seen
as tool and vendor independent ontologies. Tool exporters and
tool importers may analyze and comprehend the EIA/CDIF
metamodels independently (of each other) and create the
mappings from their particular metamodel to EIA/CDIF’s. This
way each exporter and importer is only concerned with the
mapping to and from EIA/CDIF’s metamodel, both are insulated
from each other.8

In the case that some concepts of the exporter’s metamodel are
not available in EIA/CDIF’s, then the extensibility mechanism
can be used to extend the standardized metamodel definitions to
cover the proprietary ones by means of subclassing existing
EIA/CDIF AttributableMetaObjects. An importing tool is allowed
to discard non-standardized data from the transfer, yet is able to
grasp as much of the meaning of the exported data as possible.

From the model at the M3 level and the fundamental M2 model
„Foundation“ it follows that every metamodel is an entity-
relationship-attribute model and can be regarded to be a
(graphical) language for creating models. All model definitions
are created by instantiating the appropriate AttributableMeta-
Objects of the respective metamodel.

2.2.2.1 The EIA/CDIF Metamodel „Common“

The EIA/CDIF metamodel „Common“ [12] (abbreviated: CMN)
defines those AttributableMetaObjects which the EIA/CDIF
committee believed that are usable/applicable in more than one
subject area. E.g. the meta-entity AlternateName together with the
meta-relationship „1:1 RootEntity.Has.AlternateName 0:N“

7 After the name of each AttributableMetaObject the standardized
pre-defined identifier value – enclosed in asterisks (*) - for the
attribute CDIFIdentifier is given. Meta-entities are printed in
bold, if they fully participate in some meta-relationship. Meta-
relationships are fully qualified and their cardinalities is given
as well; the unqualified meta-relationship names are shown in
italic

8 If all exporters and importers established („bilateral“) mappings
with each other, a geometric series of mappings would be
necessary.

allows for annotating any metaentity (due to relating to Root-
Entity) with synonyms. This metamodel makes a distinction
between meta-entities conveying semantic (SemanticInformation-
Object) and those conveying presentational information
(PresentationInformationObject). For SemanticInformationObject
one is able to explicitly categorize the respective Abstraction-
Level. Also, this metamodel allows for capturing information
about the user (ToolUser) who created a meta-entity.

This particular metamodel consists of 45 CollectableMetaObjects;
specifically: 1 AttributableMetaObject, 10 MetaEntity, 9 Meta-
Relationship and 25 MetaAttributes. A list representation of the
generalization hierarchy is given in figure 4.

1. RootObject *1*

1. RootEntity *2*

1. AbstractionLevel *12*
2. AlternateName *14*
3. PresentationInformationObject *30*
4. SemanticInformationObject *4*

1. DataObject *22*
2. Derivation *26*
3. ProcessObject *31*

5. TextualConstraint *51*
6. ToolUser *56*

2. 0:N RootEntity.IsRelatedTo.RootEntity 0:N *3*

1. 0:N RootEntity.CreatedBy.ToolUser 0:1 *68*
2. 1:1 RootEntity.Has.AlternateName 0:N *69*
3. 0:N RootEntity.LastUpdatedBy.ToolUser 0:1 *70*

4. 0:N RootEntity.Uses.AlternateName 0:1 *71*

5. 0:N
SemanticInformationObject.IsCategorizedIn.Abstra
ctionLevel 0:N *72*

6. 1:N
SemanticInformationObject.ProducedBy.Derivatio
n 0:N *73*

7. 1:N SemanticInformationObject.UsedIn.Derivation
0:N *74*

8. 0:N TextualConstraint.IsConstraintOn.Semantic-
InformationObject 1:N *80*

Figure 4: Generalization Hierarchy of the Metamodel
„Common“.

2.2.2.2 The EIA/CDIF Metamodel „Data Model“
The EIA/CDIF metamodel „Data Model“ [13] (abbreviated:
DMOD) defines those AttributableMetaObjects which the
EIA/CDIF committee believed that are used in most entity-
relationship-attribute based conceptual data modeling tools. For
the purpose of building components the EIA/CDIF „general
structuring mechanism“ (abbreviated: GSM) is used which
distinguishes between DefinitionObjects and ComponentObjects.
Some meta-entities in this metamodel employ multiple
inheritance; if a meta-entity belongs to more than one supertype it
is depicted in italic in figure 5.

An overview of the most important concepts defined in this
metamodel:

- A DataModel consists of the DataModelObjects Entity,
Relationship or Cluster, which at the same time are
DefinitionObjects.

- DataModelObjects play Roles which are assigned to
Relationships which associate the DataModelObjects with

each other. It is possible that multiple DataModelObjects play
the same Role.

- Cluster, Entities, Relationships, Roles and RolePlayers may
possess Attributes respectively, ProjectedAttributes.

- Clusters may be built of Clusters, Entities and Relationshpis.

- Relationships may associate two or more Entities and can be
complex by relating DataModelObjects with each other.

- Entities are identified via a (primary) Key and may possess
multiple CandidateKeys as well as ForeignKeys.

- AccessPaths can be built of Attributes or Keys.

- It is possible to define outer and inner cardinalities for the
Relationships between DataModelObjects.

- For InheritableDataModelObjects (Entities and Relation-
ships) it is possible to indicate that they are abstract or
concrete. SubtypeSets can be defined to be either disjoint or
overlapping.

This particular metamodel consists of 146 CollectableMeta-
Objects; specifically: 1 AttributableMetaObject, 23 MetaEntity,
36 MetaRelationship and 86 MetaAttributes. A list representation
of the generalization hierarchy is given in figure 5.

1. RootObject *1*

1. RootEntity *2*

1. SemanticInformationObject *4*

1. AccessPath *1001*
2. ComponentObject *8000*

1. Attribute *17*

1. ProjectedAttribute *37*

3. DataModel *1008*
4. DataModelObject *1012*

1. Cluster *1005*
2. InheritableDataModelObject *1033*

1. Entity *1016*
2. Relationship *1040*

5. DataModelSubset *1013*
6. DefinitionObject *8002*

1. Cluster *1005*
2. Entity *1016*
3. Relationship *1040*
4. Role *1042*
5. RolePlayer *1048*

7. Key *1035*

1. CandidateKey *1003*
2. ForeignKey *1032*

8. ProjectionComponent *1036*
9. RoleConstraint *1045*
10. SubtypeSet *1070*
11. SubtypeSetMembershipCriterion *1074*

2. 0:N RootEntity.IsRelatedTo.RootEntity 0:N *3*

1. 0:N AccessPath.Incorporates.Attribute 0:N *1716*
2. 0:1 AccessPath.Instantiates.Key 0:1 *1700*
3. 0:N Attribute.IsDiscriminatorFor.SubtypeSet-

MembershipCriterion 0:N *1701*
4. 0:N Attribute.IsInheritedFrom.Attribute 0:1 *1702*
5. 0:N Cluster.Collects.DataModelObject 0:N *1703*
6. 0:N ComponentObject.References.DefinitionObject

0:1 *8022*

7. 0:N DataModel.Collects.DataModelObject 0:N
1704

8. 1:1 DataModelObject.ActsAs.RolePlayer 0:N
1705

9. 0:N
DataModelObject.IsMemberOf.DataModelSubset
0:N *1706*

10. 0:N DataModelSubset.Excludes.Attribute 0:N
1707

11. 0:N DataModelSubset.IsSubsetOf.DataModel 1:1
1708

12. 0:1 DefinitionObject.Contains.ComponentObject
0:N *1131*

13. 1:1
DefinitionObject.IsConstructedWith.ProjectionCo
mponent 0:N *1709*

14. 1:1 Entity.IsAccessedUsing.AccessPath 0:N
1712

15. 1:1 Entity.IsIdentifiedBy.Key 0:N *1711*
16. 0:N ForeignKey.References.CandidateKey 1:1

1714
17. 1:N

InheritableDataModelObject.IsSubtypeIn.SubtypeS
et 0:N *1715*

18. 1:1
InheritableDataModelObject.IsSupertypeFor.Subty
peSet 0:N *1719*

19. 0:N Key.Incorporates.SemanticInformationObject
0:N *1733_Duplicate_2*

1. 0:N CandidateKey.Incorporates.ForeignKey
0:N *1713*

2. 0:1 ForeignKey.Incorporates.RolePlayer 0:1
1728

3. 0:N Key.Incorporates.Attribute 0:N *1733*

20. 0:N ProjectedAttribute.IsProjectionOf.Attribute 0:N
63

21. 0:N
ProjectionComponent.IsFullProjectionOf.Definiti
onObject 1:1 *1721*

22. 0:N
ProjectionComponent.IsProjectionOf.Attribute
1:N *1722*

23. 2:N Role.BelongsTo.Relationship 1:1 *1724*
24. 0:N

RoleConstraint.Incorporates.SemanticInformationO
bject 0:N *1727*

1. 0:N
RoleConstraint.Incorporates.RoleConstraint
0:N *1725*

2. 0:N RoleConstraint.Incorporates.RolePlayer
0:N *1726*

25. 0:N RolePlayer.IsSupportedBy.Key 0:1 *1729*
26. 1:N RolePlayer.Plays.Role 0:1 *1730*
27. 0:N RolePlayer.Refines.RolePlayer 0:1 *1731*
28. 0:1

RolePlayer.RefinesForSubtype.DataModelObject
0:N *1732*

29. 1:1
SubtypeSet.Specifies.SubtypeSetMembershipCrit
erion 0:N *1736_Duplicate_3*

30. 0:N SubtypeSetMembershipCriterion.Selects.-
InheritableDataModelObject 1:1 *1737*

Figure 5: Generalization Hierarchy of the Metamodel „Data
Model“.

2.2.2.3 The EIA/CDIF Metamodel „Data Flow“
The EIA/CDIF metamodel „Data Flow“ [14] (abbreviated: DFM)
defines those AttributableMetaObjects which the EIA/CDIF
committee believed that are used in most data flow modeling
tools. For the purpose of building components the EIA/CDIF
„general structuring mechanism“ (abbreviated: GSM) is used
which distinguishes between DefinitionObjects, Component-
Objects, ReferencedElements and EquivalenceSets. Referenced-
Elements allow for defining paths determining in which sequence
ComponentObjects are to be built/traversed. An EquivalenceSet
allows for defining two or more ComponentObjects to be
(semantically) equivalent. Because the GSM is used extensively in
this metamodel, there are relatively few meta-relationships
defined for it. Some meta-entities in this metamodel employ
multiple inheritance; if a meta-entity belongs to more than one
supertype it is depicted in italic in figure 6.

An overview of the most important concepts defined in this
metamodel:

- ExternalAgents are the source and the sink of Flows.

- ExternalAgentDefinitions determine the structure of External-
Agents by defining FlowPorts through which Flows pour.

- DFMProcesses work up what comes in through Flows and
may employ Stores for retrieving, changing or storing working
means (goods, information). The results of the DFMProcesses
are transported via Flows to other DFMProcesses or
ExternalAgents.

- DFMProcessDefinitions determine the structure of
DFMProcesses which contain FlowPorts and which may be
used e.g. to pinpoint which component DFMProcesses are
threadable.

This particular metamodel consists of 84 CollectableMetaObjects;
specifically: 1 AttributableMetaObject, 24 MetaEntity, 9 Meta-
Relationship and 50 MetaAttributes. A list representation of the
generalization hierarchy is given in figure 6.

1. RootObject *1*

1. RootEntity *2*

1. SemanticInformationObject *4*

1. ComponentObject *8000*

1. Attribute *17*
2. DFMProcess *6005*
3. EquivalenceSet *1113*
4. ExternalAgent *6004*
5. FlowProducerConsumer *232*

1. Flow *227*
2. FlowPort *6015*

1. FlowInputPort *6001*

1. ConstraintPort *6012*
2. ControlPort *6014*
3. SupportPort *6010*

2. FlowOutputPort *6000*

6. Port *1129*

1. FlowPort *6015*

1. FlowInputPort *6001*

1. ConstraintPort *6012*
2. ControlPort *6014*
3. SupportPort *6010*

2. FlowOutputPort *6000*

7. ReferencedElement *8020*
8. Store *6028*

2. DataFlowModel *210*
3. DefinitionObject *8002*

1. DFMProcessDefinition *213*
2. ExternalAgentDefinition *6002*
3. FlowDefinition *221*
4. StoreDefinition *239*

2. 0:N RootEntity.IsRelatedTo.RootEntity 0:N *3*

1. 0:N ComponentObject.References.DefinitionObject
0:1 *8022*

2. 0:1
DataFlowModel.HasRoot.DFMProcessDefinition
0:1 *6026*

3. 0:1 DefinitionObject.Contains.ComponentObject
0:N *1131*

4. 0:N
EquivalenceSet.HasMember.ComponentObject
2:N *1114*

5. 0:N
FlowProducerConsumer.ProducesOrConsumes.Flo
w 0:N *6023*

1. 0:N FlowProducerConsumer.Consumes.Flow
0:N *6024*

2. 0:N FlowProducerConsumer.Produces.Flow
0:N *6025*

6. 0:N
ReferencedElement.DefinesPath.ComponentObjec
t 1:N *8025*

Figure 6: Generalization Hierarchy of the Metamodel „Data
Flow“.

2.2.2.4 The EIA/CDIF Metamodel „Presentation,
Location and Connectivity“
The EIA/CDIF metamodel „Presentation, Location and
Connectivity“ [15] (abbreviated: PLAC) defines those
AttributableMetaObjects which the EIA/CDIF committee
believed suitable for exchanging annotated node-edge diagrams
depicted in a threedimensional space. It is expected that PLAC
models are not instantiated themselves, i.e. no M0 layer will get
created for them.9 This is the first metamodel that employs the
concept of a reference to meta-entities, meta-relationships and
values of meta-attributes of a given meta-entity or meta-
relationship.

An overview of the most important concepts defined in this
metamodel:

- A Diagram consists of GraphicalElements, namely Nodes and
Edges which themselves are placed as AbsolutePoints or
RelativePoints relative to threedimensional Points.

- Edges connect Nodes with each other, whereby they may
consist of multiple connected EdgeElements.

- Annotations may be composed of multiple Annotation-
Arguments.

9 „PLAC models” are instances of the PLAC metamodel and
directly represent the diagrams to be exchanged. Therefore there
is no practical need to instantiate the „PLAC models”
themselves.

This particular metamodel consists of 61 CollectableMetaObjects;
specifically: 1 AttributableMetaObject, 14 MetaEntity, 11 Meta-
Relationship and 35 MetaAttributes. A list representation of the
generalization hierarchy is given in figure 7.

1. RootObject *1*

1. RootEntity *2*

1. PresentationInformationObject *30*

1. AnnotationArgument *10013*
2. Diagram *10002*
3. GraphicalElement *10004*

1. Edge *10006*
2. EdgeElement *10007*
3. PositionedElement *10005*

1. Annotation *10010*
2. Node *10011*

4. Point *10003*

1. AbsolutePoint *10009*
2. RelativePoint *10008*

2. SemanticObjectReference *10014*

2. 0:N RootEntity.IsRelatedTo.RootEntity 0:N *3*

1. 1:1 Annotation.Uses.AnnotationArgument 0:N
10059

2. 1:1 Edge.ConsistsOf.EdgeElement 0:N *10056*
3. 0:N Edge.IsAttachedTo.GraphicalElement 0:2

10055
4. 0:N EdgeElement.HasEnd.Point 2:2 *10057*
5. 0:N GraphicalElement.AppearsOn.Diagram 1:1

10052
6. 0:N Point.IsDependentUpon.PositionedElement 0:1

10060
7. 0:N Point.IsLocatedOn.Diagram 1:1 *10053*
8. 0:N PositionedElement.HasCenter.Point 1:1

10054
9. 0:N PresentationInformationObject.Represents.-

SemanticObjectReference 0:N *10051*
10. 0:N RelativePoint.IsRelativeTo.Point 1:1 *10058*

Figure 7: Generalization Hierarchy of the Metamodel
„Presentation, Location and Connectivity“.

2.2.2.5 The Hypothetical EIA/CDIF Metamodel
„Integrated Metamodel“
The hypothetical „Integrated Metamodel” is created by means of a
union of all defined MetaObjects, which can be used as a central
EIA/CDIF repository, which also may serve as a dictionary for
EIA/CDIF based modeling. Among other applications, it may help
to ensure that modelers are able to re-use as much of the
standardized MetaObjects as possible, either by detecting that
needed ones exist already and therefore one merely needs to refer
to them, or by specializing existing MetaObjects, thereby re-using
all of their definitions (and specializations).

In the work carried out for [23] all standardized EIA/CDIF
metamodels, including „Foundation“ were extracted from their
original text, parsed and transferred to a relational database
(Oracle 7.3) for additional analysis. In this project the conceptual
„Integrated Metamodel“ (abbreviated: IMM) was created and
published for the first time in public.

As a result it has become possible to indicate the structure of the
IMM metamodel. It consists of a total of 292 CollectableMeta-
Objects; specifically: 1 AttributableMetaObject, 62 MetaEntity,

60 MetaRelationship and 169 MetaAttributes. It may be
interesting to anecdotically note that over all EIA/CDIF
metamodels practically the same number of meta-entities and
meta-relationship have been defined.

2.3 An Example: a Metamodel for
Exchanging a Model
This section shall demonstrate how one can define a metamodel
with EIA/CDIF and a model based upon it, which both get
exchanged using EIA/CDIF’s Syntax.1 and clear text encoding
Encoding.1 for transferring model data.10

As most people may be acquainted with the entity relationship
modeling paradigm, a primitive (“bare bone”) entity relationship
modeling language will get defined as depicted in figure 8 and
which will be called “Bare_Bone_ERM”. This particular
modeling language hence consists of some entity type “EntType”
and some relationship type “RelType”, which both can be denoted
with an attribute called “Name”. “RelType”s are binary and they
allow for denoting the minimum and maximum number of entities
participating in relationships of the given type at both ends,
dubbed the “source” and the “target”. The arrow connecting the
participating entity types with a given relationship type will
possess an arrow head pointing at the “target”.

1. RootObject *1*

1. RootEntity *2*

1. EntType *ME_1*

2. 0:N RootEntity.IsRelatedTo.RootEntity 0:N *3*

1. 0:N EntType.RelType.EntType 0:N *MR_1*

Figure 8: Metamodel „Bare_Bone_ERM“ (an Example of a
Metamodel).

Any EIA/CDIF compliant metamodel one devises must use the
EIA/CDIF metamodel “Foundation” as its root as mentioned
above, so “EntType” and “RelType” need to be defined as
subtypes of “RootEntity” and “IsRelatedTo”, respectively.

As is the case with the EIA/CDIF metamodel “Foundation” the
types themselves including their attributes need to be created by
instantiating the appropriate entity types in the meta-metamodel,
“EntType” will be an instance of M3’s “MetaEntity”, “RelType”
of M3’s “MetaRelationship”, and the “Name” attributes as well as
the “RelType” attributes “MinSourceCardinality”, “MaxSource-
Cardinality”, “MinTargetCardinality” and “MaxTarget-
Cardinality” will be instances of M3’s “MetaAttribute”. Instances
of the M3 relationship type “IsLocalAttributeOf” will get used to
assign the attributes to their types and instances of the M3
relationship type “HasSubtype” will document the fact that
“EntType” is a subtype of “RootEntity” and “RelType” is a
subtype of “IsRelatedTo”. Figure 9 shows the metamodel
“Foundation” and how the “Bare_Bone_ERM” metamodel relates
to it.

10 This section follows thoroughly the EIA/CDIF
standards as defined in [8], [9] and [10]. Specific examples of
applying CDIF in the context of simulation and electronic
systems can be found e.g. in [3], [4] and [19].

CDIFIdentifier
DateCreated
TimeCreated
DateUpdated
TimeUpdated

IsRelatedTo

0:N
0:N

RootObject

RootEntity

EIA/CDIF Metamodel "Foundation"

RelName
MinSourceCardinality
MaxSourceCardinality
MinTargetCardinality
MaxTargetCardinality

EntName 0:N
0:N

Metamodel "Bare_Bone_ERM"

RelTypeEntType

Figure 9: The Metamodel tree with the EIA/CDIF compliant
„Bare_Bone_ERM“ Metamodel.

Given a simple entity relationship model expressed with the
“Bare_Bone_ERM” depicting a simple automobile special interest
group (abbrev.: ASIG), figure 10 represents the following facts
about it: “a member may own one or more vehicles” and “a
vehicle must be owned exactly by one member”. It follows
therefore that there are members allowed to own no vehicle at all.

1:1 0:N
Member VehicleOwns

Figure 10: An ASIG-Model Utilizing the „Bare_Bone_ERM“
Metamodel.

Figure 11 shows a transfer of this metamodel with the means of
EIA/CDIF’s Syntax.1 [9] and Encoding.1 [10] standard.

CDIF,SYNTAX "SYNTAX.1" "02.00.00",ENCODING "ENCODING.1" "02.00.00"

#| comment: prologue ended, header section starts |#
(:HEADER

(:SUMMARY
(ExporterName "ACAT – A

CDIF Aware Tool")
(ExporterVersion "01.21")
(ExportDate "2001/11/26")
(ExportTime "00:21:54")))

#| metamodel section |#
(:META-MODEL
#| refer to an EIA/CDIF standardized metamodel |#

(:SUBJECTAREAREFERENCE Foundation
(:VERSIONNUMBER "01.00"))

#| define new metamodel |#
(SubjectArea SA_1

(Name *Bare_Bone_ERM*)
(VersionNumber "01.00")
(Description #[A Metamodel example.]#))

#| define new MetaEntity |#
(MetaEntity ME_1

(Name *EntType*)
(Description #[Represents an entity type.]#))

#| MetaEntity is a subtype of "RootEntity" |#
(AttributableMetaObject.HasSubtype.

AttributableMetaObject 2 ME_1)

#| define new MetaAttribute |#
(MetaAttribute MA_1

(Name *Name*)
(Description #[Stores the name.]#)

(DataType <String>)
(Length "64")
(IsOptional -False-))

#| assign new MetaAttribute to MetaEntity |#
(MetaAttribute.IsLocalMetaAttributeOf.

AttributableMetaObject MA_1 ME_1)

#| define new MetaRelationship |#
(MetaRelationship MR_1

(Name *RelType*)
(Description #[Represents a relationship type.]#)
(MinSourceCard "0")
(MaxSourceCard "N")
(MinDestCard "0")
(MaxDestCard "N"))

#| MetaRelationship is a subtype of "IsRelatedTo" |#
(AttributableMetaObject.HasSubtype.

AttributableMetaObject 3 MR_1)

#| MetaRelationship relates two „EntType“s |#
(MetaRelationship.HasSource.MetaEntity MR_1 ME_1)
(MetaRelationship.HasDestination.MetaEntity

MR_1 ME_1)

#| define new MetaAttributes |#
(MetaAttribute MA_2

(Name *Name*)
(Description #[Stores the name.]#)
(DataType <String>)
(Length "64")
(IsOptional -False-))

(MetaAttribute MA_3
(Name *MinSourceCardinality*)
(Description

#[Stores the minimum source cardinality.]#)
(DataType <String>)
(Length "10")
(IsOptional -False-))

(MetaAttribute MA_4
(Name *MaxSourceCardinality*)
(Description

#[Stores the maximum source cardinality.]#)
(DataType <String>)
(Length "10")
(IsOptional -False-))

(MetaAttribute MA_5
(Name *MinTargetCardinality*)
(Description

#[Stores the minimum target cardinality.]#)
(DataType <String>)
(Length "10")
(IsOptional -False-))

(MetaAttribute MA_6
(Name *MaxTargetCardinality*)
(Description

#[Stores the maximum target cardinality.]#)
(DataType <String>)
(Length "10")
(IsOptional -False-))

#| assign new MetaAttributes to MetaRelationship |#

(MetaAttribute.IsLocalMetaAttributeOf.
AttributableMetaObject MA_2 MR_1)

(MetaAttribute.IsLocalMetaAttributeOf.
AttributableMetaObject MA_3 MR_1)

(MetaAttribute.IsLocalMetaAttributeOf.
AttributableMetaObject MA_4 MR_1)

(MetaAttribute.IsLocalMetaAttributeOf.
AttributableMetaObject MA_5 MR_1)

(MetaAttribute.IsLocalMetaAttributeOf.
AttributableMetaObject MA_6 MR_1)

#| assign new MetaEntity, MetaRelationship and
MetaAttributes to the newly defined metamodel |#

(CollectableMetaObject.IsUsedIn.SubjectArea ME_1 SA_1)
(CollectableMetaObject.IsUsedIn.SubjectArea MR_1 SA_1)
(CollectableMetaObject.IsUsedIn.SubjectArea MA_1 SA_1)
(CollectableMetaObject.IsUsedIn.SubjectArea MA_2 SA_1)
(CollectableMetaObject.IsUsedIn.SubjectArea MA_3 SA_1)
(CollectableMetaObject.IsUsedIn.SubjectArea MA_4 SA_1)
(CollectableMetaObject.IsUsedIn.SubjectArea MA_5 SA_1)
(CollectableMetaObject.IsUsedIn.SubjectArea MA_6 SA_1)

)

#| Model section |#
(:MODEL

(EntType ET_1 (Name
"Member"))

(EntType ET_2 (Name
"Vehicle"))

(EntType.RelType.EntType R_1 ET_1 ET_2
(Name "Owns")
(MinSourceCardinality "1")
(MaxSourceCardinality "1")
(MinTargetCardinality "0")
(MaxTargetCardinality "N")

)
)

Figure 11: Defining the „Bare_Bone_ERM“ Metamodel and
Exchanging the ASIG Model Based Upon it.11

3. CONCLUSION
The standardization work of EIA/CDIF [18] was concluded at the
end of 1998. All the resulting EIA/CDIF standards are available
and can be purchased from EIA [17]. This way the results of the
years long work of highly regarded industry experts and the
wealth of information contained in these standards remain
accessible for the years to come.

HTML renderings of the original EIA/CDIF AttributableMeta-
Object definitions can be found on the World-Wide-Web at [37].

The baselines (standards) of EIA/CDIF were transferred to
ISO/IEC JTC1/SC7 WG11 which has been actively developing an
international standard of CDIF, since November 2000 the
working group 11 merged with the newly created working group
19, “ODP and Modelling Languages”,. Once this work on CDIF
is completed, a slightly changed but international set of CDIF
standards will evolve.

Many of the EIA/CDIF contributors have been actively working
on co-developing OMG standards in the context of the „Meta
Object Facility“ (abbreviated: MOF, a meta-metamodel, [34]
[32]), of the „Unified Modeling Language“ (abbreviated: UML, a
metamodel, [35]) and the „XML Metadata Interchange“
(abbreviated: XMI, a stream based transfer format, [22], [36]).
Therefore it may be expected that the EIA/CDIF standards and the
experiences gained while developing them are used as input for
developing standards for modeling domains in addition to UML.
As a matter of fact, if an axiomatic mapping from EIA/CDIF’s
meta-metamodel to MOF was done, then deriving XMI DTDs for
them would be a straight forward process.

In the realm of XML an additional and interesting development
could be undertaken by creating a SYNTAX.2 and ENCODING.2
CDIF exchange utilizing the work on „XML Schema” which
became a W3C recommendation in May 2001 [38]. It would be
possible to define appropriate XML schemas for the M3-, M2- and
M1-layer and by doing so, taking advantage of all the applications
(tools) which have been developed for manipulating XML
Schema based data to employ CDIF data exchanges.

Independently of future work on EIA/CDIF, the available set of
standards contains a wealth of thoroughly devised definitions,
information and concepts, which one can put to work right away,
if the exchange of model data is of importance to companies and
the academia.

11 Due to space constraints some words were broken up
right after a delimiting point. In such a case the immediately
following line would have to be abutted to the trailing dot
beginning with the first non space character of the following
line.

4. REFERENCES
[1] ANSI: „Information Resource Dictionary System (IRDS)“,

American National Standard Institute, New York 1989.

[2] Batini C., Ceri S., Navathe S.: „Conceptual Database
Design“, The Benjamin/Cummings Publishing, Redwood
City 1992.

[3] Burst A., Spitzer B., Wolff M., Müller-Glaser K.D.: „On
Code Generation for Rapid Prototyping Using CDIF“,
OOPSLA Workshop #25, „Model Engineering, Methods and
Tools Integration with CDIF“, Vancouver 1998.

[4] Burst A., Wolff M., Kühl M., Müller-Glaser K.D.: „Using
CDIF for Concept-Oriented Rapid Prototyping of Electronic
Systems“, working paper, Institute for Information Processint
Technology (ITIV), University of Karlsruhe 1998: :
http://www-itiv.etec.uni-
karlsruhe.de/FORSCHUNG/f_rpt/v_rsp98/rsp98.html

[5] ECMA: „Portable Common Tool Environment (PCTE) –
Mapping from CASE Data Interchange Format (CDIF) to
PCTE“, ECMA-270, ECMA 1997.
http://www.ecma.ch/stand/Ecma-270.htm

[6] EIA: „CDIF – CASE Data Interchange Format – Overview“,
Interim Standard, EIA/IS-106, EIA 1994.

[7] EIA: „CDIF – Framework for Modeling and Extensibility“,
Interim Standard, EIA/IS-107, EIA 1994.

[8] EIA: „CDIF – Transfer Format – General Rules for
Syntaxes“, Interim Standard, EIA/IS-108, EIA 1994.

[9] EIA: „CDIF – Transfer Format – Transfer Format Syntax –
SYNTAX.1“, Interim Standard, EIA/IS-109, EIA 1994.

[10] EIA: „CDIF – Transfer Format – Transfer Format Encoding
– ENCODING.1“, Interim Standard, EIA/IS-110, EIA 1994.

[11] EIA: „CDIF – Integrated Meta-model, Foundation Subject
Area“, Interim Standard, EIA/IS-111, EIA 1994.

[12] EIA: „CDIF – Integrated Meta-model, Common Subject
Area“, Interim Standard, EIA/IS-112, EIA 1995.

[13] EIA: „CDIF – Integrated Meta-model, Data Modeling
Subject Area“, Interim Standard, EIA/IS-114, EIA 1996.

[14] EIA: „CDIF – Integrated Meta-model, Data Flow Subject
Area“, Interim Standard, EIA/IS-115, EIA 1996.

[15] EIA: „CDIF – Integrated Meta-model, Presentation Location
and Connectivity Subject Area“, Interim Standard, EIA/IS-
118, EIA 1996.

[16] EIA: „CDIF Transfer Format – OMG IDL Bindings“,
EIA/IS-734, EIA 1997.

[17] EIA: WWW homepage of the „Electronic Industries Alliance
(EIA).
http://www.eia.org

[18] EIA: WWW homepage of the „Electronic Industries
Association (EIA), CASE Data Interchange Format (CDIF)
committee“.
http://www.eigroup.org/cdif/index.html

[19] Ernst J.: „Contributions to the Integration of Tools and
Techniques for the Development of Heterogeneous
Embedded Real-Time Systems“, Forschungsbericht des
Forschungszentrums für Informatik (FZI), Karlsruhe 1998.

[20] Flatscher R.G.: „An Overview of the Architecture of EIA's
CASE Data Interchange Format (CDIF)“, in: “, in: Rundbrief
der Gesellschaft für Informatik – Fachausschuß 5.2
(Informationssystem Architekturen), 3. Jahrgang, Heft 1.

[21] Flatscher R.G.: „Federating Meta-model and Model Data
with EIA/CDIF's CORBA Compliant MIDDLEWARE.1“,
in: Rundbrief der Gesellschaft für Informatik – Fachausschuß
5.2 (Informationssystem Architekturen), 4. Jahrgang, Heft 1,
1997.

[22] Flatscher R.G.: „Exchange of UML-Models with
EIA/CDIF“, in: Schader M., Korthaus A. (Hrsg.): „The
Unified Modeling Language – Technical Aspects and
Applications“, Physica-Verlag, Heidelberg 1998.

[23] Flatscher R.G.: „Metamodellierung in EIA/CDIF“, ADV
Verlag, Wien 1998.
http://www.wu-wien.ac.at/wi/rgf/adv/.

[24] ISO/IEC: „Information Technology (IT), Conceptual
Modelling Facilities (CSMF)“, Committee Draft SC21 WG3
N2039 for International Standard ISO/IEC 14481, January
1997.

[25] ISO/IEC: „Information Technology – CDIF Framework –
Part 1: Overview“, committee draft CD 15474-1, ISO/IEC
JTC 1/SC 7 N, 1540R, ISO/IEC 1998.

[26] ISO/IEC: „Information Technology – CDIF Framework –
Part 2: Modelling and Extensibility“, committee draft CD
15474-2, ISO/IEC JTC 1/SC 7 N, 1541R, ISO/IEC 1998.

[27] ISO/IEC: „Information Technology – CDIF Transfer format
– Part 1: General Rules for Syntaxes and Encodings“,
committee draft CD 15475-1, ISO/IEC JTC 1/SC 7 N,
1542R, ISO/IEC 1998.

[28] ISO/IEC: „Information Technology – CDIF Transfer format
– Part 2: Syntax SYNTAX.1“, committee draft CD 15475-2,
ISO/IEC JTC 1/SC 7 N, 1543R, ISO/IEC 1998.

[29] ISO/IEC: „Information Technology – CDIF Transfer format
– Part 3: Encoding ENCODING.1“, committee draft CD
15475-3, ISO/IEC JTC 1/SC 7 N, 1544R, ISO/IEC 1998.

[30] ISO/IEC: „Information Technology – CDIF Semantic
Metamodel – Part 1: Foundation“, committee draft CD
15476-1, ISO/IEC JTC 1/SC 7 N, 1545R, ISO/IEC 1998.

[31] ISO/IEC: „Information Technology – CDIF Semantic
Metamodel – Part 2: Common“, committee draft CD 15476-
2, ISO/IEC JTC 1/SC 7 N, 1546R, ISO/IEC 1998.

[32] ISO/IEC: „Information Technology – CDIF Semantic
Metamodel – Part 4: Data Models“, committee draft CD
15476-4, ISO/IEC JTC 1/SC 7 N, 1548R, ISO/IEC 1998.

[33] ISO/IEC: „Information Technology – CDIF Semantic
Metamodel – Part 5: Data Flow Models“, committee draft
CD 15476-5, ISO/IEC JTC 1/SC 7 N, 1549R, ISO/IEC 1998.

[34] OMG: „Meta Object Facility (MOF) – Specification“,
version 1.0, OMG standard.
ftp://ftp.omg.org/pub/docs/ad/97-10-02.pdf

[35] OMG: „Unified Modeling Language (UML)“, version 1.1,
OMG standard.
http://www.omg.org/techprocess/meetings/schedule/
Technology_Adoptions.htm#UML_Specification“.

[36] OMG: „XML Metadata Interchange (XMI)“, version 1.0,
OMG standard.
http://www.omg.org/cgi-bin/doc?ad/98-10-05.pdf

[37] WU Wien: HTML-renderings of all of the EIA/CDIF
metamodels (standards as well as drafts), derived directly
from the electronic versions of the standards and drafts.
http://wwwi.wu-wien.ac.at/cdif

[38] W3C: „XML Schema“, version 1.0, W3C recommendation:
http://www.w3c.org/XML/Schema

