
Voting in Clustering
and

Finding the Number of Clusters

Evgenia Dimitriadou
Andreas Weingessel

Kurt Hornik

Report No. 30
March 1999



March 1999

SFB
‘Adaptive Information Systems and Modelling in Economics and Management Science’

Vienna University of Economics
and Business Administration

Augasse 2–6, 1090 Wien, Austria

in cooperation with
University of Vienna

Vienna University of Technology

http://www.wu-wien.ac.at/am

Papers published in this report series
are preliminary versions of journal articles

and not for quotations.

This paper was accepted for publication in:
Proceedings of the “International ICSC Symposium on Advances in Intelligent Data

Analysis (AIDA 99)” (“International Congress on Computational Intelligence: Methods and
Applications (CIMA 99)”, ICSC Academic Press)

This piece of research was supported by the Austrian Science Foundation (FWF) under
grant SFB#010 (‘Adaptive Information Systems and Modelling in Economics and

Management Science’).



Voting in Clustering and Finding the Number of Clusters

Evgenia Dimitriadou Andreas Weingessel

Kurt Hornik

Institut f�ur Statistik, Wahrscheinlichkeitstheorie & Versicherungsmathematik

Technische Universit�at Wien

Wiedner Hauptstra�e 8{10/1071

A-1040 Wien, Austria

Email: �rstname.lastname@ci.tuwien.ac.at

Abstract

In this paper we present an unsupervised algorithm

which performs clustering given a data set and which

can also �nd the number of clusters existing in it.

This algorithm consists of two techniques. The �rst,

the voting technique, allows us to combine several

runs of clustering algorithms, with the number of

clusters prede�ned, resulting in a common partition.

We introduce the idea that there are cases where an

input point has a structure with a certain degree of

con�dence and may belong to more than one clus-

ter with a certain degree of \belongingness". The

second part consists of an index measure which re-

ceives the results of every voting process for di�erent

number of clusters and makes the decision in favor of

one. This algorithm is a complete clustering scheme

which can be applied to any clustering method and

to any type of data set. Moreover, it helps us to over-

come instabilities of the clustering algorithms and to

improve the ability of a clustering algorithm to �nd

structures in a data set.

Keywords: Clustering Algorithms, Unsupervised

Learning, Stability, Number of Clusters

1 Introduction

Partitioning a given population of individuals into

\similarity" groups has many applications in science

and business. When partitioning individuals into

plausible subgroups usually the following main prob-

lems are encountered: First, di�erent cluster algo-

rithms and even multiple replications of the same

algorithm result in di�erent solutions due to random

initializations and stochastic learning methods. Ev-

ery clustering algorithm tries to optimize some cri-

terion, like minimizing the mean-square error. If

the task is to �nd structures in the data, these

optimization criteria might not be the appropriate

ones. Especially, if the probability distribution of

the given data set is completely unknown (generally

non-Gaussian), it is not clear which criterion to use.

Second, there is very little indication about the cor-

rect choice of the number of clusters to look for.

To tackle the �rst problem, we handle di�erent re-

sults of various runs by using the existing idea of

voting in classi�cation (Breiman, 1996; Freund &

Schapire, 1995), where the output of several single

classi�ers can be combined to reduce the variance

of the error and to get an overall decision made by

the combined classi�ers. We develop a process which

allows voting between several results of a clustering

algorithm. The idea is that the voting process can be

applied to any existing algorithm that has instable

results.

In the next step of the algorithm, we take advan-

tage of the \fuzzy" partition that voting results to, in

order to �nd a measure to specify the \right" num-

ber of clusters existing in the data set. We introduce

some measures that help to explain and handle the

voting results and also an index measure, which we

compute for di�erent number of clusters. This shows

us the \importance" of every cluster solution in order

to make the decision in favor of one.

2 Proposed Algorithm

We describe analytically the proposed algorithm as

a two stage algorithm starting with the voting pro-

cess and continuing with the work out of the voting



results together with the index measure for �nding

the number of clusters.

2.1 Voting

In classi�cation, there is a �xed set of labels which

are assigned to the data. Therefore, we can compare

for every input x the results of the various classi-

�ers, i.e., the labels assigned to x and apply a voting

procedure between these results. Things are di�er-

ent in clustering, because di�erent runs of a cluster-

ing algorithm can result in di�erent clusters, which

might partition the input data in totally di�erent

ways. Thus, there is the problem to decide which

cluster of one run corresponds to which in another

run.

We developed the following algorithm. Our input

data x is clustered several times. Let Cij denote

the jth cluster in the ith run and Dij denote the

jth cluster in the combination of the �rst i runs.

The �rst two runs are combined in the following way.

First a mapping between the clusters of the two runs

is de�ned. To do this we compute for each cluster C2j

how many percent of its points have been assigned to

which cluster C1k. Then, the two clusters with the

highest percentage of common points are assigned

towards each other. Of the remaining clusters, again

the two with the highest similarity are matched and

so on. After renumbering the clusters of the second

run so that C2j corresponds to C1j; 8j, we assign the

points to the common clusters D2j in the following

way. If a data point x has been assigned to both

C1j and C2j it will be assigned to D2j. If x has been

assigned to C1j in the �rst run and to C2k with j 6= k

in the second run then it will be assigned to both,

D2j and D2k, with weight 0:5.

If we have already combined the �rst n runs in

a common clustering Dnj we add an additional run

C(n+1)j by combining it with Dnj in the same way as

for two runs, but give weight n=(n+1) to the common

clusters of the �rst n runs and weight 1=(n + 1) to

the new cluster.

2.2 Finding the Number of Clusters

For the results of the voting algorithm the data

points are typically not uniquely assigned to one clus-

ter, but there is a \fuzzy" partition. That is, after

voting of N runs we get for every data point x and

every cluster j a value DNj which gives the frac-

tion of times this data point has been assigned to

this cluster. For the �nal result we assign every data

point to that cluster k = argmaxj(DNj) where it

has been assigned most often. We de�ne the sure-

ness of a data point as the percentage of times it

has been assigned to its \winning" cluster k, that is

sureness(x) = maxj(DNj ). Then we can not only

see how strong a certain point belongs to a cluster

but we can also compute the average sureness of a

cluster (avesure) as the average sureness of all the

points of a cluster that belong to it. In this way we

can notice which clusters have a clear data structure

and which not.

We can now compute the \sureness of the result",

as the mean value of the sureness of all data points.

To �nd the right number of clusters we apply the

voting algorithm to an increasing number n of clus-

ters and we compute for each n the sureness of this

result, which we call numsure(n).

On one hand, there is the tendency that num-

sure(n) decreases starting from the minimum num-

ber of clusters to the maximum, because the decision

has to be made between more and more clusters. On

the other hand, we expect an increase of numsure(n),

if we reach the right number of clusters. To take both

e�ects into account, we propose the following mea-

sure devsure(n) to �nd the right number of clusters:

devsure(n):=
�
numsure(n) � numsure(n� 1)

�

�
�
numsure(n + 1)� numsure(n)

�

This second order di�erence shows how much the

solution for n clusters deviates from the general de-

crease of the sureness. The solution with the max-

imum value for devsure(n) is the one whose cluster

structure found by voting is the clearest.

3 Experimental Results

3.1 Implementation

We apply our voting algorithm on the results of

several o�- and on-line clustering algorithms (Linde

et al., 1980; Xu et al., 1993; Martinetz et al., 1993).

We use arti�cial and real world data sets, where the

true cluster structure is known.

All of the above algorithms are not able to indi-

cate or propose the appropriate solution in the case

of unstable results, and moreover they show local

minima problems due to dependencies on the initial

conditions of the simulations or on the choice of the

learning rate. Our purpose is to study how far our

algorithm can overcome these instabilities.



The experiments presented here consist of 100 runs

of a clustering algorithm and a voting between these

runs (see also Weingessel et al., 1998). This pro-

cedure is repeated for di�erent prespeci�ed number

of clusters. Cluster solutions are computed starting

with 2 cluster centers up to 13 centers. The range

is chosen so that it contains at least twice the num-

ber of clusters that there is in the data sets, so that

the solution where every existing cluster might be

split into two parts is still contained in the range of

considered centers. After every voting the proposed

measure is calculated for every number of prespeci-

�ed clusters, in order to �nd in the end the number

of clusters in the set. Since we are for our data sets

aware of the true cluster structure, we can treat the

result of a cluster algorithm as a classi�cation prob-

lem, (Mucha, 1992, page 202), although we do not

use the class information during clustering. That is,

we can compute how many points have been assigned

by the cluster algorithm to the right cluster.

In Tables 1, 2, 4 and 5 we show the avesure

of every cluster in the data set for a typical run of

voting, and also the mean value and standard devi-

ation of the mean average sureness of all clusters in

100 voting runs. The results given in Table 6 are the

mean value and standard deviation for the classi�-

cation rate of the results of 100 runs of the cluster

algorithm (for the right number of clusters in the

data sets) and 100 voting ones. Each voting run has

been performed with the results of 100 new cluster

runs.

Moreover, we show in Table 7 how many times our

algorithm �nds the right number of clusters in a set.

Also, to give an idea of how clear the decision of the

measure is, the absolute di�erence between the win-

ning number of clusters and the second number is

computed and scaled by the range of the numbers

for all clusters. The mean value and standard devi-

ation of this in 100 runs (both multiplied by 100) is

given in the columns Sureness of Decision and Sd.

Consequently, if the measure �nds the right number

of clusters (almost) every time, it is optimal for the

Sureness of Decision to be high, if the measure is

wrong, it is favorable to be small to indicate an un-

sure decision. In Figure 1 we see the mean average

sureness of a typical result of a voting run for every

number of clusters, where as in Figure 2 we see the

respective values of the decision measure for every

data.

We present only the results of voting with one par-

ticular cluster algorithm, because the results for the

other algorithms are similar.

3.2 Data Sets

Arti�cial data sets as well as real-world sets are used

to demonstrate the performance of our algorithm. A

description of these data sets, some �gures and ta-

bles, as well as some comments on the results, follow

in order to make clear and demonstrate the perfor-

mance of the algorithm.

3.2.1 4 Gaussian Balls

This data set, which is an extension of the one of

Mao & Jain (1995) consists of 4 normally distributed

clusters in a 10-dimensional space with mean val-

ues �1 = (1; 1; 1; 1; 1; 1; 1;1;1;1)T, �2 = ��1, �3 =

(1; 1; 1; 1; 1;�1;�1;�1;�1;�1)T, and �4 = ��3 and

the identity matrix as covariance matrix �1 = �2 =

�3 = �4 = I. Each cluster consists of 500 points.

In this data set every voting run is applied to 100

k-means results. Since this data set is well separated,

the numsure of the voting result with 4 clusters is

100% in 98 out of 100 repetitions (see Table 1). In

the 2 other repetitions the numsure is 99:6%. Thus,

it is not diÆcult for our algorithm to �nd always that

this data set consists of 4 clusters (see Table 7, also

Figure 2). We also have to mention that since in

this data set the k-means clustering algorithm yields

always stable results (see Table 6), it is consequent

that the voting algorithm yields an identical result

since there are no di�erent results to \vote" in be-

tween.

Cluster 1 2 3 4 mean sd

Avesure 100 100 100 100 99.99 0.06

Table 1: Gaussian 4 Clusters: Average Sureness

3.2.2 3 Gaussian Balls

This data set consists of 3 Gaussian Balls. The �rst

two of them correspond to the �rst two of the pre-

vious example, the third cluster has only 100 points

and lies in between with zero mean zero and covari-

ance matrix �3 = 0:01I. The diÆculty of this data

set is the small cluster in the middle. The k-mean

clustering algorithm, with the number of 3 clusters

speci�ed, su�ers in this data set by not being many



times able to �nd the correct structure but it splits

the external big ball into 2 clusters and shares the

data points of the middle one to all the 3 clusters.

Nevertheless, our algorithm �nds the correct 3 clus-

ters in 95 out of the 100 runs; only twice the result

is 2 clusters (thus ignoring the small cluster), three

times the algorithm suggests 10 clusters (see Table 7,

also Figure 2). Moreover, the classi�cation rate im-

proves from 87% to 93% and the high standard de-

viation (almost 11) is decreased reaching almost the

zero value (see Table 6).

Cluster 1 2 3 mean sd

Avesure 96.69 94.34 79.48 91.23 1.47

Table 2: Gaussian 3 Clusters: Average Sureness

3.2.3 A Binary Data Set

One of our current research projects is the analysis

of binary marketing data. Therefore, we experiment

also with a 12-dimensional arti�cial binary scenario

(see Table 3) that has been designed in the follow-

ing way: we have 12 binary variables belonging to 4

groups (G1, G2, G3, G4) of 3 variables each. There

are 6 types of data points in the data set. Each type

has for the variables of 2 of the 4 variable groups a

high probability (H stands for 0.8) to have a 1 there

and for the other variables a low probability (L for

0.2). In the experiment the sizes of the 6 types (and

therefore the sizes of the expected clusters) are 1000

each. The clusters in this example are overlapping,

thus a 100%-correct classi�cation is impossible. The

Bayes classi�cation rate, which is the performance

of the theoretically best classi�er for a given proba-

bility distribution, is 82.98% for this data set. For a

more detailed description of this (and other) arti�cial

binary data sets, see Dolnicar et al. (1998).

Type G1 G2 G3 G4 n

1 H H L L 1000

2 L L H H 1000

3 L H H L 1000

4 H L L H 1000

5 L H L H 1000

6 H L H L 1000

Table 3: Binary Data Set

Table 6 shows that voting can improve the classi-

�cation rate from 81% to 83% which is close to the

Bayes rate. Also the standard deviation between dif-

ferent voting runs is close to 0. As seen in Table 7 the

voting algorithm �nds all the time in all 100 runs the

right number of clusters. The single runs of a clus-

tering algorithm for this data set are performed by

hard competitive learning method.

Cluster 1 2 3

Avesure 90.78 90.93 88.48

Cluster 4 5 6

Avesure 90.34 92.59 88.72

mean sd

Avesure 88.72 1.00

Table 4: Binary Data: Average Sureness

3.2.4 Iris Data Set

We apply a clustering algorithm to the well known

Iris data set (see for exampleMucha, 1992, page 131).

The reason of using this data set is to prove the

competence of the voting algorithm to a real and

known data set. Basically, the Iris data set is con-

sidered as a classi�cation problem because the true

classes are known. But because there are no well

known benchmark data sets for cluster problems, we

treat the problem as a clustering one (Mucha, 1992,

page 202).We apply the hard competitive learning al-

gorithm because it proved to have less stable results

than k-means and then we compare it with voting.

In Table 6 we can see that voting improves the per-

formance from 82% to 89% with almost 0 standard

deviation (13 by the hard competitive learning al-

gorithm). Table 5 shows that the \setosa cluster",

which is linearly separable from the others, is the

surest.

In 86 out of 100 runs our algorithm �nd the right

number of 3 clusters, the other decisions are 4 clus-

ters once, 6 clusters 4 times, and 8 to 12 clusters the

remaining 9 repetitions (see Table 7, also Figure 2).

Cluster setosa versicolor virginica

Avesure 100.00 93.87 95.58

mean sd

Avesure 96.45 0.39

Table 5: Iris: Average Sureness



clust.alg. voting

mean std mean std

Gauss 4 Cl. 97.75 0.00 97.75 0.00

Gauss 3 Cl. 86.74 10.97 92.74 0.64

Binary 81.43 2.88 82.78 0.15

Iris 82.73 13.03 89.00 0.38

Table 6: Data Sets: Correct Classi�cation

2 4 6 8 10 12

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Clusters

N
um

su
re

Gauss 4Cl
Gauss 3Cl
Binary
Iris

Figure 1: Mean Average Sureness

2 4 6 8 10 12

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Number of Clusters

D
ev

su
re

Gauss 4Cl

Gauss 3Cl

Binary

Iris

Figure 2: Measure values

Right Sureness

Data Number of

Set Found Decision Sd

Gauss 4Cl. 100 53.69 3.19

Gauss 3Cl. 95 37.75 11.11

Binary 100 45.22 6.81

Iris 86 19.39 0.11

Table 7: Data Sets: Right Number of Clusters Found

4 Conclusions

In this paper we present a method to combine the

results of several independent clustering runs by vot-

ing between their results. This allows us to deal with

the problem of local minima of clustering algorithms

and to �nd a partition of the data which is supported

by repeated applications of the clustering algorithm,

without being inuenced by the randomness of ini-

tialization or the cluster process itself. Furthermore,

we introduce some measures that help us to under-

stand and to analyze the results of the voting process

and moreover to take advantage of these results by

de�ning an index measure that can be used to �nd

the right number of clusters in a data set. Therefore,

this algorithm helps to overcome the problems of in-

stable cluster results and of an unknown number of

clusters.

Acknowledgments

This piece of research was supported by the Austrian

Science Foundation (FWF) under grant SFB#010

(`Adaptive Information Systems and Modeling in

Economics and Management Science').

References

Breiman, L. (1996). Bagging predictors. Machine

Learning, 24, 123{140.

Dolnicar, S., Leisch, F., Weingessel, A., Buchta,

C., & Dimitriadou, E. (1998). A Comparison of

Several Cluster Algorithms on Arti�cial Binary

Data Scenarios from Tourism Marketing. Work-

ing Paper 7, SFB \Adaptive Information Systems

and Modeling in Economics and Management Sci-

ence", http://www.wu-wien.ac.at/am.



Freund, Y. & Schapire, R. E. (1995). A decision-

theoretic generalization of on-line learning and an

application to boosting. Lecture Notes in Com-

puter Science, 904.

Linde, Y., Buzo, A., & Gray, R. M. (1980). An algo-

rithm for vector quantizer design. IEEE Transac-

tions on Communications, COM-28(1), 84{95.

Mao, J. & Jain, A. K. (1995). Arti�cial neural net-

works for feature extraction and multivariate data

projection. IEEE Transactions on Neural Net-

works, 6(2), 296{317.

Martinetz, T. M., Berkovich, S. G., & Schulten,

K. J. (1993). \Neural-Gas" network for vector

quantization and its application to time-series pre-

diction. IEEE Transactions on Neural Networks,

4(4), 558{569.

Mucha, H.-J. (1992). Clusteranalyse mit Mikrocom-

putern. Akademie Verlag.

Weingessel, A., Dimitriadou, E., & Hornik, K.

(1998). A Voting Scheme for Cluster Algorithms.

Working Paper 23, SFB \Adaptive Information

Systems and Modeling in Economics and Man-

agement Science", http://www.wu-wien.ac.at/am.

Accepted for publication in: Proceedings of the

\Fourth International Workshop Neural Networks

in Applications '99", Magdeburg, Germany.

Xu, L., Krzyzak, A., & Oja, E. (1993). Rival pe-

nalized competitive learning for clustering analysis

RBF net and curve detection. IEEE Transactions

on Neural Networks, 4(4), 636{649.


