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Influence Factors for Local 
Comprehensibility of Process Models 
 

Abstract 

The main aim of this study is to investigate human understanding of process models and to develop an 

improved understanding of its relevant influence factors. Aided by assumptions from cognitive 

psychology, this article attempts to address specific deductive reasoning difficulties based on process 

models. The authors developed a research model to capture the influence of two effects on the cognitive 

difficulty of reasoning tasks: (i) the presence of different control-flow patterns (such as conditional or 

parallel execution) in a process model and (ii) the interactivity of model elements. Based on solutions 

to 61 different reasoning tasks by 155 modelers, the results from this study indicate that the presence of 

certain control-flow patterns influences the cognitive difficulty of reasoning tasks. In particular, 

sequence is relatively easy, while loops in a model proved difficult. Modelers with higher process 

modeling knowledge performed better and rated subjective difficulty of loops lower than modelers with 

lower process modeling knowledge. The findings additionally support the prediction that interactivity 

between model elements is positively related to the cognitive difficulty of reasoning. Our research 

contributes to both academic literature on the comprehension of process models and practitioner 

literature focusing on cognitive difficulties when using process models.  

Keywords: Deductive Reasoning, Business Process Models, Model Comprehension, Cognitive 

Complexity 
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1 Introduction 

Cognitive research has got a long tradition in the context of system development. Cognitive challenges 

in programming – and in reading and understanding data and process models – have been studied 

extensively to better match system engineering methods and human cognitive capabilities (Burton-Jones 

et al., 2009; Gemino and Wand, 2004; Hoc et al., 1990). Unlike computers, which can easily process 

program code and translated conceptual models of arbitrary size, human understanding is influenced by 

cognitive bias and irrational beliefs (Green et al., 2009). 

Process models are conceptual models commonly applied to document and communicate processes and 

provide between system support and organizational requirements (Rosemann, 2006). Process modeling 

is a critical step in the analysis and development of automated execution support for processes. Human 

understanding of process models is particularly relevant because process models usually involve many 

tasks, which “must be enacted by a human rather than a machine” (Curtis et al., 1992). However, the 

cognitive understanding and use of such models may be error-prone, especially for novices. Therefore, 

human interaction with process models is a relevant new research field. Several attempts have been 

made to identify influence factors of process model understanding (e.g., Figl et al., 2013a; Figl et al., 

2013b; Mendling et al., 2012; Reijers and Mendling, 2011) and process model creation (e.g., Recker et 

al., 2012).  

In this article, we focus on how humans reason on the basis of process models. While a variety of 

previous studies in this research stream have related model comprehension to global complexity metrics 

of process models (e.g., size, the number of specific model elements, labeling, layout,…) (Mendling et 

al., 2010b; Mendling et al., 2012; Reijers and Mendling, 2011), little is known about what exactly makes 

it difficult for humans to reason on the basis of a process model. It is in particular the comprehensibility 

of local properties of model structures as well as the interactivity between model elements that have not 

been studied in detail. Therefore, this article examines the cognitive difficulty of understanding specific 

parts of a process model instead of considering the model as a whole. Theoretically, it builds on cognitive 

load theory to explain cognitive difficulty of reasoning tasks. We propose to conceptualize 

comprehension of process models as deductive reasoning tasks, with the process model as the premise, 
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and the comprehension tasks as possible conclusions drawn on the basis of the model.The article builds 

on a data set of comprehension questions that allows us to evaluate the cognitive difficulty of reasoning 

tasks and to relate this value to local metrics of the model elements involved in the task. 

Related research efforts have already been undertaken in the area of software complexity (e.g. Yang et 

al., 2005). In that context, researchers have, for instance, identified measures that assign complexity 

values to portions of the code. By visualizing such measures in combination with code lines, the reader 

of a program could be alerted that a specific part of the code required special attention (Umphress et al., 

2006). Likewise, knowledge gained in this study could inform modeling tool designers about process 

model structures with a sophisticated cognitive difficulty which enables them to design similar tool-

based feedback. From a theoretical perspective, this study makes a contribution to the body of literature 

by providing the first empirical analysis of relevant influence factors for local comprehensibility of 

process models. 

1 Deductive Reasoning with Process Models 

1.1 Deductive Reasoning 

Both comprehension and correct interpretation of models are relevant for many different tasks (Burton-

Jones et al., 2009). In this context, Dumas et al. (2013) state that “a thorough understanding is the 

prerequisite to conduct process analysis, redesign or execution.” Asking comprehension questions is 

therefore the most common way to measure comprehension of process models (e.g. Mendling et al., 

2012; Reijers and Mendling, 2011). Such comprehension questions can be characterized as deductive 

reasoning tasks, since correct answers can be derived from general knowledge on process-flow logic 

and the specific process model. The questions require deductive reasoning, which is defined as the 

“mental process of making inferences that are logical” (Johnson-Laird, 2010). While the “classical” 

psychological research on deductive reasoning has predominantly focused on propositional (based on 

negation and connectives as if, or and and) and predicate reasoning (based on quantifiers as all, some or 

no), concepts related to process logic have largely been neglected.  
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In deductive reasoning, a clear distinction is made between content and form. For instance, in the case 

of the form modus ponens with two premises (A implies B, A is true), the conclusion (B is true) is 

always valid if the premises are true, regardless of the premises’ content. A and B can be substituted by 

any content and the conclusion will still be valid. For process models this means that the verbal labels 

in the models and comprehension tasks could be substituted by any kind of label, e.g. abstract numbers, 

and the logical soundness of a conclusion would still be the same. Figure 1 provides an example of a 

process model with abstract labels and four sound conclusions regarding the two model elements D and 

H. The conclusions refer to a single process instance, i.e. a single execution of a business case according 

to the rules described in the business process model. Process instances are created and executed based 

on the process logic defined in the model (Rinderle et al., 2004). The model uses the widespread 

Business Process Model and Notation (BPMN) standard. Rectangles with rounded corners depict a task. 

Arrows between elements indicate in which order the tasks can be executed. The diamond symbol is 

used to model a decision (thus, in a single process instance either task H or task I is executed, but not 

both), and the diamond symbol with a “+” symbol inside is used to model the start and end of parallel 

execution. 
  

Premises: An example process model Possible sound conclusions for a single 
execution of the process 

 

 
D and H cannot be executed in parallel. 
H can be executed more often than D. 
D and H can both be executed in a process 
instance. 
D is executed before H. 
 

Figure 1. Process model comprehension tasks as reasoning tasks. 

A typical outcome in research on deductive reasoning research often is the use of frequency tables of 

the correct solutions to different logical arguments to better analyze how humans intuitively reason and 

to contrast their reasoning with formal logic (e.g. Beller and Spada, 2003; Braine et al., 1995). A major 

result of such studies is that humans do not necessarily reason logically but apply heuristics and are 

often subject to fallacies. For instance, according to the “post hoc ergo propter hoc” fallacy, humans 

assume “that a particular event, B, is caused by another event, A, simply because B follows A in time” 

ED
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(Damer, 2013). Thus, humans tend to misinterpret a temporal sequence for a causal connection. By the 

same token, we are interested in how far humans reason logically on the basis of process models, whether 

specific reasoning fallacies do occur and whether some inferences are more difficult than others. In the 

following sections, we want to discuss several influence factors for the cognitive difficulty to reason on 

the basis of a process model. 

1.2 Cognitive Load and Deductive Reasoning 

From a cognitive point of view, the human working memory is the main component involved in 

deductive reasoning with process models. The term ‘working memory’ “refers to a brain system that 

provides temporary storage and manipulation of the information necessary for such complex cognitive 

tasks as language comprehension, learning, and reasoning” (Baddeley, 1992). If working memory is 

overburdened, reasoning errors are more likely to occur (De Neys et al., 2005; Süß et al., 2002).  

In contrast to typical deductive arguments (in the form of two premises and a conclusion), process 

models as premises are not single but compound premises which makes deductive reasoning tasks fairly 

complex. So far, no current theory has explicitly addressed cognitive load demands in reasoning with 

process models. However, we can draw on theories from related areas, e.g. profound theories on the 

cognitive processes that are performed by programmers to understand a piece of software. The challenge 

to reason on the basis of a process model is fairly similar to the process of understanding facts from 

software code: (i) Control-flow structures such as conditional execution or loops need to be considered; 

(ii) Control-flow structures can be nested, and the information (the process model or the code) can be 

traced by the reader in an arbitrary order. Therefore, it is reasonable to assume that the process of 

reasoning in a business process model can be described as an adaption of the model for the process of 

program understanding described by Cant et al. (1995). This model suggests that, in order to understand 

a section of code, the programmer performs both chunking and tracing. Chunking refers to recognizing 

a group of statements and memorizing it as a single reference (a “chunk”). In business process models, 

chunking involves identification of model elements (such as tasks and gateways) that can be considered 

a group of elements “belonging together”. Control-flow patterns (van der Aalst et al., 2003) are typical 

structures for building such groups of related elements. Tracing can be described as scanning through a 
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program (or a business process model) in order to identify relevant chunks. Cant et al. (1995) point out 

that the cognitive difficulty of solving a programming inquiry is determined by the complexity of the 

chunks and the difficulty in moving between them. Thus, when investigating reasoning in process 

models, we also need to consider the following two aspects: (i) the types of involved control-flow 

patterns (as candidates for chunks) and (ii) the relations between the elements representing those 

patterns, affecting moving between them (element interactivity). Bearing this in mind, the following 

sections will detail the cognitive load of element interactivity and control-flow patterns in process 

models. We will then describe how human process modeling expertise may ease identification of 

patterns in process models and reduce cognitive load. Finally, we also discuss whether the phrasing of 

a reasoning task may increase potential reasoning bias. 

1.2.1 Element Interactivity 

Process models usually include more elements than those needed to solve a specific reasoning task. Not 

all elements of a process model are therefore of equal importance to a specific task. On the contrary, it 

might be sufficient to understand just a small detail of the model to find a correct solution. Thus, when 

reasoning on various pairs of elements in a model, the reasoning difficulty will vary depending on the 

selection of those elements. The level of interactivity between the elements determines the number of 

model elements that really require attention. Elements interact if interrelated, such, that it is necessary 

to assimilate them simultaneously (Sweller, 1994). High interactivity results in high cognitive load, 

because each element has to be processed with reference to other elements. In contrast, cognitive load 

is low when the elements can be processed serially, without referring to other elements. Indeed, 

empirical studies have revealed that a high interactivity between model elements can make a model 

more difficult to understand (Guceglioglu and Demirors, 2005; Vanderfeesten et al., 2008). This line of 

reasoning is further supported by the fact that with a higher number of model elements, overall cognitive 

difficulty and the number of errors in the models increase (Mendling et al., 2007a; Mendling et al., 

2010a).  

1.2.2 Control-Flow Patterns 

Second, we turn to control-flow patterns (control structures) in process models and the cognitive 

difficulty to understand them. Control-flow patterns refer to “activities and their execution ordering 
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through different constructors” (van der Aalst et al., 2003). Execution ordering involves basic control 

structures such as Sequence, Loops (also known as iteration, or cycles), the AND-pattern (parallel 

execution) and the XOR-pattern (conditional execution). For the purpose of this article, we examine the 

impact of the most basic control-flow patterns as summarized in Table 1. 

Table 1. Description of control flow patterns. 

Control-flow 
pattern 

Description 

Sequence Tasks are executed in succession. 
AND 
 

A pair of an AND-split and an AND-join, allowing ≥ 2 paths to be executed 
in parallel (control-flow patterns “Parallel Split” and “Synchronization”) 

XOR 
 

A pair of an XOR-split and an XOR-join with the meaning that exactly one 
out of ≥ 2 possible paths is chosen and executed (control-flow patterns 
“Exclusive Choice” and “Simple Merge”). 

Loop A loop in the model that allows the repeated execution of some part of the 
model (can be one of the control-flow patterns “Structured Loop” and 
“Arbitrary Cycles”). 

 

We are interested in whether the control-flow patterns AND, XOR or Loop are more difficult to 

understand than the simple Sequence pattern and whether, as a consequence, cognitive difficulty of 

deductive reasoning tasks differs depending on the control-flow patterns involved. So far, few studies 

have been performed on the cognitive aspects of understanding such control structures in process 

models. However, based on the similarity between structures in software code and process models 

(Guceglioglu and Demirors, 2005; Vanderfeesten et al., 2008), we can draw on research findings on 

program code complexity as a basis for hypothesizing about the cognitive difficulty of control-flow 

patterns. The area of procedural code complexity (Tegarden et al., 1995) considers sequences, decision 

structures and loops and, therefore, is an appropriate equivalent to analyzing control structures of process 

models. Cater et al. (1984), for instance, propose to calculate logical effort of code on the basis of 

decomposing a program into structural elements like loops or decisions. Cant and Jeffery (1995) argue 

that “intuitively, a conditional control structure is more complex to understand than a normal sequential 

section of code.” Shao & Wang (2003) propose different cognitive weights for basic control structures. 

They rate sequence as the easiest (weight=1), followed by branching (XOR) (weight=2), iteration 

(loops) (weight=3), embedded components (weight=2-3) and parallel execution (AND) as most difficult 

(weight=4). However, a serious weakness of this proposal is that it is not based on empirical evidence.  
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Previous research on process models suggests that understanding their control-flow is generally difficult 

for humans (Mendling et al., 2010a). Current research results revealed that some kinds of control-flow 

constructs are more difficult to understand than others. However, different authors provide seemingly 

conflicting positions and no single study exists which adequately covers comprehension of control-flow 

constructs. For example, Sánchez-González et al. (2012) conclude that XORs are more difficult to 

understand than AND patterns. In contrast, Weitlaner et al. (2013), who investigated the cognitive 

difficulty of control-flow elements in a comprehension study with practitioners, found slightly lower 

comprehension scores for concurrency in comparison to order, XOR and repetition. Based on a small 

number of user feedbacks, they reported specific problems of users with concurrency. However, it 

remains unclear whether the differences they had found were statistically significant and whether they 

actually resulted from problems understanding AND or rather from the fact that the practitioners simply 

did not know the notation. Modeling guidelines recommend to avoid inclusive OR gateways altogether, 

as they may lead to reasoning fallacies (Mendling et al., 2010a). The higher cognitive difficulty of 

inclusive ORs is also reflected in findings on deductive reasoning with natural language connectives. 

“Or” is more likely to be interpreted in its exclusive form, not as an inclusive “or”-operator (Naess, 

1961). Based on the low relevance of inclusive ORs in modeling practice, we refrain from including 

them in our study. 

1.3 Modeling Knowledge 

In empirical research on system development, a growing body of literature has investigated how novices 

and experts differ (e.g. Davies, 1994; Gilmore, 1990). For instance, when less experienced modelers 

create new conceptual models, they demonstrate more difficulties in understanding the problem and 

integrating problem facets than modelers with profound modeling knowledge do. This leads to lower 

quality models regarding several characteristics such as correctness, completeness or innovativeness 

(Batra and Davis, 1992; Shanks, 1997). Thus, modelers with higher modeling knowledge are not only 

faster but their cognitive processing also changes in a qualitative way. Similarly, in the context of 

conceptual modeling, Petre (1995) has claimed that “experts ‘see’ differently and use different strategies 

than novice graphical programmers”. Studies have revealed, for instance, that they develop language-

independent, abstract problem representations in their mind, e.g., for iterations (e.g. Rist, 1989). These 
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‘schemas’ – constructs that merge multiple elements of information into one concept – are stored in 

long-term memory. This way, the working memory does not have to store those elements individually 

but can deal with a ‘schema’ as just one piece of information. Consequently, there are more free working 

memory resources for the same reasoning task. Unlike novices, people with a higher programming 

knowledge memorize program structures as patterns. When developing program elements, they plan on 

a higher, abstract level (Bateson et al., 1987). 

1.4 Validity of Conclusion 

While it can be objectively determined whether a given conclusion is valid in a deductive reasoning 

task, its phrasing as well as the validity of the conclusion may lead to reasoning biases. According to 

the “atmosphere-effect” (Woodworth and Sells, 1935) and the “matching-strategy” (Wetherick and 

Gilhooly, 1995), wording of the premises and conclusion is relevant for the relative difficulty of 

deductive reasoning tasks. For instance, if the premises are affirmative, the participants are more likely 

to accept an affirmative conclusion (Woodworth and Sells, 1935). To give an example, based on the two 

premises “If some X’s are Y’s, and some Y’s are Z’s”, studies show that 72% of humans tend to wrongly 

accept the invalid conclusion “then: Some X’s are Z’s” (Wetherick and Gilhooly, 1995; Woodworth and 

Sells, 1935). Thus, they employed a matching strategy instead of relying on deductive reasoning. 

2 Research Model 

Based on the theoretical assumptions described above, we will now discuss the anticipated effects of the 

four supposed relevant influence factors on the cognitive difficulty of a deductive reasoning task (viz., 

a specific comprehension task based on a process model). We summarize our expectations in the 

research model shown in Figure 2. Overall, our model aims to contribute to research on reading, 

analyzing and using process models. The ability to deduce correct conclusions based on the ‘premises’ 

expressed in a process model is relevant to almost any situation in which the comprehension of the 

model is necessary for analysis or reengineering tasks (Burton-Jones et al., 2009).  
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Figure 2. Research model. 

First, we turn to the influence of expertise in the area of process modeling. In light of the theoretical 

considerations on novice and advance modelers above, it can be assumed that there are differences 

between modelers with lower or with higher process modeling knowledge when it comes to logic 

reasoning on a process model: While the modelers with higher process modeling knowledge presumably 

have stored schemas in long-term memory that allow them to process a group of model elements (such 

as all those elements that build a certain control-flow pattern) simultaneously, modelers with lower 

process modeling knowledge have to split their cognitive resources for the individual model elements. 

The higher the cognitive load the lower the ability to make valid conclusions. This is in line with the 

results by Mendling et al. (2012) who have shown a positive influence of modeling knowledge and 

experience on the ability to understand process models. Thus, we contend that modelers with higher 

process modeling knowledge will be better in solving deductive reasoning tasks and will also experience 

these tasks as easier than modelers with lower process modeling knowledge. Therefore we assume: 

H1. It is more difficult for modelers with lower process modeling knowledge to solve deductive 

reasoning tasks in a process model than it is for modelers with higher process modeling knowledge. 

Second, we turn to different control-flow patterns. Previous research comparing different control 

structures in program code (Cant et al., 1995; Shao and Wang, 2003) and in process models (Sánchez-

KEY
F: Theoretical Factor   
O: Operationalization of Factor
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F: Control Flow Pattern
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• Sequence
• XOR
• AND 
• Loop
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Cognitive Difficulty
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F: Subjective Cognitive Difficulty
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F: Process Modeling Knowledge
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González et al.) suggests that cognitive difficulty of comprehending control-flow patterns varies. 

Therefore, we contend that the cognitive difficulty of a reasoning task is influenced by the type of 

involved control-flow patterns. Therefore we assume:  

H2. The type of control-flow patterns that has to be understood (such as Sequence, “parallel split” [AND] 

for parallel execution or “exclusive choice” [XOR] for conditional execution and Loop) has an influence 

on the cognitive difficulty in reasoning. 

While there are compelling arguments from literature that Sequence, as the very basic control-flow 

pattern, has lower cognitive difficulty than other more complex patterns (Cant et al., 1995), previous 

research does not suggest further clear-cut differences among the cognitive difficulties of different 

control-flow patterns. However, we assume that a reasoning task will be more difficult when it involves 

a combination of multiple patterns that would probably add up to a greater cognitive load. We will call 

a combination of more than one pattern other than the simple Sequence pattern (viz., a combination of 

parallel or conditional execution and iteration) a Compound pattern. Please note that this term does not 

refer to a standardized pattern, it is rather used as an abbreviation for “more than one control-flow pattern 

other than Sequence.” We hypothesize that such Compound patterns are of a higher cognitive difficulty 

than single patterns. Therefore, we are particularly interested in the following hypotheses: 

H2a. Reasoning tasks that require only the Sequence pattern to be understood are easier to solve than 

those for which other (non-trivial) patterns are involved. 

H2b. Reasoning tasks that require a Compound pattern (i.e., more than one control-flow pattern [other 

than the simple Sequence pattern]) to be understood are more difficult to solve than reasoning tasks for 

which only a single control-flow pattern has to be considered for finding the correct answer. 

Third, we turn to the interactivity between elements. We expect that if it is necessary for a reasoning 

task to consider a high number of model elements and their interrelations, the cognitive load will be 

higher (Sweller, 1994). On the basis of this argument, we thus propose the following hypothesis: 

H3. The interactivity between elements will be positively associated with the cognitive difficulty of a 

reasoning task including them. 
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Fourth, we turn to the validity of the conclusion. According to the atmosphere and the matching 

hypotheses, it is relevant whether there is a consistency between affirmativeness of premises and 

conclusions. We speculate that a typical process model is an “affirmative” presentation of the premises, 

in case the conclusion is valid. This is because typical process models are imperative, meaning that they 

“require all execution alternatives to be explicitly specified in the model” (Pichler et al., 2012). Unlike 

the uncommon “declarative” process models, which would focus on constraints and impossible process 

executions, an imperative process model specifies all possible alternatives and visually presents all 

possible instantiations of the process. If an (affirmatively formulated) conclusion is valid, the 

“affirmative” nature of the process model represents the same affirmative “atmosphere”, and, as a result, 

the “atmosphere” bias supports providing a correct answer. Thus, we anticipate the following:  

H4. It is easier to correctly identify (affirmatively worded) valid conclusions of a process model than 

invalid conclusions. 

3 Design and Measures 

In order to test our hypotheses, we use a subset of a large data set of answers to process model 

comprehension questions (Figl et al., 2013b).1 We want to point out that we analyzed comprehension 

values on task level (viz., each comprehension question constitutes a specific reasoning task). Answers 

to the questions were aggregated (across all participants) for two groups: modelers with lower modeling 

knowledge and modelers with higher modeling knowledge. Thus, we obtained four averaged estimates 

of cognitive difficulty for each reasoning task (one for subjective and one for objective difficulty, for 

each of the two groups, respectively). In the following section, we present the background of the dataset, 

the construction of the process models and the selection of measures used to determine subjective and 

objective cognitive difficulty of reasoning tasks. Then, we describe how we measured element 

interactivity and type of control flow pattern relevant to a reasoning task. 

                                                      
 
1 This larger data set has been used to study another research question – the understandability of different visual 
gateway symbols. By selecting the data subset for which the design of the symbols did not impose additional 
burdens we avoided unnecessary "noise" and variance in answers. 
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3.1 Materials: Questionnaire Parts 

The questionnaire was prepared for a pencil- and paper evaluation. The first part comprised items on 

subjects' demographic data, academic qualifications and modeling experience. We asked the subjects to 

rate the amount of process models they had already created or read and to estimate the amount of hours 

of modeling training attended (at school or at university).  

The next part of the questionnaire contained questions adapted from the theoretical knowledge test of 

process modeling by Mendling et al. (Mendling and Strembeck, 2008; Mendling et al., 2012) . Examples 

of test items were “Exclusive choices can be used to model repetitions” and “If an activity is modeled 

to be part of a loop, it has to be executed at least once”. Using a previous test, we follow a suggestion 

of Siegmund and Schumann (2014) on how to measure experience in the context of comprehension 

experiments: “researchers can use a validated instrument… instead of using an ad hoc definition that 

differs between different experiments and researcher groups.” This way, the subjects’ subjective ratings 

of their experience with process models were complemented with an objective measurement of process 

modeling knowledge. Experience is a major confounding parameter in such comprehension 

experiments.  

Moreover, the questionnaire included a tutorial on process modeling, which was intended to recall the 

meaning of each symbol used and covered all aspects the subjects would need to know in order to 

perform the reasoning tasks. The main part of the questionnaire contained four different process models 

with eight corresponding deductive reasoning tasks per model. The following two sections 3.2 and 3.3 

describe details of the choice of models and tasks. Appendix A gives an example of a process model 

and its corresponding reasoning tasks.  

To measure the perceived (subjective) difficulty of the reasoning tasks, we asked the subjects to rate 

each task on a seven-point, single-item cognitive load measure (with the labels “very difficult”, 

“difficult”, “rather difficult”, “neither difficult nor easy”, “rather easy”, “easy” and “very easy”) as 

proposed by Marcus et al. (1996). To avoid order effects due to decreasing motivation or concentration 

of subjects we used two different scramblings. Models as well as reasoning tasks were presented in 
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different orders. The subjects were allowed to spend as much or as little time as desired on the 

questionnaire.  

3.2 Choice of Process Models 

We used four different models as a basis for presenting the deductive reasoning tasks. Two of them were 

drawn from the business domain (Product Management and Customer Relationship Management). The 

other two were taken from relatively uncommon domains: an emergency process plan for drinking-water 

pollution and an e-mail election process (the last process was taken from the BPMN standard document, 

Object Management Group, 2013). 

We used models with concrete instead of abstract labels in order to make results valid to real models in 

practice. We chose to use a verb-object labeling style as this is the most frequently suggested naming 

convention (Leopold et al., 2013). Abstract labels might limit the generalizability because research 

revealed that material with abstract labels has a slightly different effect on human reasoning than 

material with content labels (Beller and Spada, 2003; Markovits et al., 2002), which also eases model 

comprehension (Mendling et al., 2012).  

3.3 Choice of Reasoning Tasks 

Eight different reasoning tasks were devised for each of the four models. This is in concurrence with 

Evans (1972) who proposed to use a variety of reasoning tasks to be able to relate results to underlying 

cognitive operations. Too few reasoning tasks could result in the misinterpretation of single sentences 

in the tasks by the subjects and invalid results. The wording of the tasks was based on comprehension 

questions developed by Reijers et al. (2011) and Melcher et al. (2010) and refers to different relations 

between model elements. For each model, we asked two questions for each of the following question 

types: “A and B can be executed at the same point of time”, “A and B can be executed in parallel”, “In 

one process instance A as well as B can be executed”, “The process steps A and B are mutually 

exclusive”, “A can be executed more often than B”, “In each process instance A is executed exactly as 

often as B”, “If A as well as B are executed in a process instance, then A is executed before B” and “If 

A as well as B are executed in a process instance, then A has to be finalized before B can start.” Unlike 

Reijers et al. (2011) and Melcher et al. (2010), we used consistent questions so that subjects had always 



16 
 

to consider two model elements (two activities). This was necessary for the comparison of the results of 

the reasoning tasks with each other. Although the individual process element labels used in the reasoning 

tasks were meaningful (e.g. “dig off soil” and “buy new equipment”), we assured that the correctness of 

the stated relation between them (e.g. “are mutually exclusive”) could only be answered based on the 

process model and not based on every-day knowledge (as for instance in a reasoning task such as 

“‘Accepting offer’ and ‘declining offer’ are mutually exclusive”). 

All comprehension questions were formulated in a way that they did not include negations (e.g., we ask 

whether “A and B can be executed in parallel”, and not “A and B cannot be executed in parallel”.) 

Additionally, we ran a pre-test to ascertain that the wording was comprehensible for the subjects (Laue 

and Gadatsch, 2011). 

When compiling the test material, we alternated correct and incorrect answers. This variation was 

required to investigate the factor “validity of conclusion”. To further enhance the variety of different 

reasoning tasks, we used two versions of the questionnaire (version A and B), resulting in 64 different 

reasoning tasks. In both versions, exactly the same models were used.  

3.4 Measurement of Element Interactivity 

In this section, we will discuss how we operationalized element interactivity in the process models 

through two different metrics. For defining these metrics, we consider a process model as a directed 

graph without referring to the semantic meaning of its nodes. In addition, the measures do not take into 

account which types of gateways are relevant for answering a question, since the factor “control-flow 

patterns” covers this point. 

3.4.1 Process Structure Tree Distance 

In order to define a measure for the cognitive load resulting from a reasoning task involving two 

elements in a process model, we follow the idea of Vanhatalo et al. (2009) to decompose the process 

model into canonical fragments with a single entry and a single exit. These fragments can be arranged 

in a process-structure tree in a way that there is exactly one process structure tree for each process model. 

Figure 3 shows an example process model and its corresponding process tree. 
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An example process model Process structure tree 

  

 

  

Figure 3. Example process model and its corresponding process tree. 

We argue that the distance between two elements in the process structure tree can serve as a measure 

for the interactivity between those elements. Each fragment in the tree represents one concept (for 

example, the concept of an exclusive choice or the concept of parallel branching) that the reader of the 

model has to understand. If elements are located in deeply nested control-flow blocks, the reader has to 

understand a large number of concepts before being able to answer a question concerning the relation 

between those elements. On the other hand, if both elements are located in the same control block 

without additional nesting, they will also be in the same region of the process structure tree. 

Formally, we define the process structure tree distance between two elements X and Y of a process 

model as the number of edges between X and Y in the process structure tree, minus one. This means 

that elements in a sequence or in the same control block (for example, two elements that are executed 

in parallel without any further branching) have a process structure tree distance of one. For instance, the 

process structure tree distance between model elements D and H in Figure 3 is 5, while the distance 

between model elements D and E is 1. 
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3.4.2 Cut-Vertices 

A second aspect we took into account when discussing the interactivity between elements A and B in a 

process model is the case where a single edge in the process model separates the model into two disjoint 

parts P1 and P2, such that A∈P1 and B∈P2. In terms of graph theory, this means that the connected graph, 

that forms the process model, has a “cut-vertex” on a path from A to B, i.e., a vertex (edge) that, when 

removed, causes a disconnection in the remaining graph. If such a cut-vertex exists between A and B, 

the mental model of the relationships between A and B becomes much easier, because A is located 

“before” and B is located “after” an easy-to-spot reference point (the cut-vertex). The model in Figure 

3 shows, for instance, two cut vertices (between model element A and fragment 1, and between fragment 

1 and fragment 4). 

3.5 Measurement of Control-Flow Patterns 

We used a consensus-building rating approach to determine which control-flow patterns had to be 

considered to solve each deductive reasoning task. First, two raters (the authors of the paper) made the 

judgment independently, and in a next step, inconsistencies were discussed to reach a final 

categorization. All 64 reasoning tasks were categorized to refer to one of the control-flow patterns 

Sequence, AND, XOR, Loop and Compound. The Compound category was used for reasoning tasks 

which demand participants to understand more than one control-flow pattern other than Sequence. 

3.6 Subjects 

A total of 199 business students participated in this study (125 males, 74 females). We categorized 

subjects into two groups according to their score in the process modeling knowledge test. We selected 

this test instrument to divide the students into a group with higher process modeling knowledge and 

another group with lower process modeling knowledge, because previous research has shown that 

theoretical knowledge is more important to syntactical process model comprehension than other factors 

such as practical experience (Mendling et al., 2012). The use of groups is important for our subsequent 

analysis, as we intend to perform statistical tests on the basis of reasoning tasks as test subjects and not 

on the basis of subjects, which would allow the use of the process model knowledge test score as 

continuous covariate. Based on a median-split of the process modeling test scores (the median was 5 
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correct answers), we grouped subjects in two equally large (extreme) groups: 72 subjects (36%) with 0-

4 points (0-50% test score) and 84 subjects (42%) with 6-8 points (75%-100%). We justify this selection 

with the fact that according to Preacher et al. (2005) extreme groups “need not be equal in size or cover 

the same range of scores”. The remaining 44 subjects (22%) with five correct answers were excluded, 

resulting in a sample size of 156; 72 subjects for the group with lower process modeling knowledge and 

84 subjects for the group with higher process modeling knowledge. Table 2 provides a summary of the 

subject groups and their characteristics. As expected, the subjects of the higher process modeling 

knowledge group had created and read significantly more process models and had been trained for more 

hours in modeling than subjects of the other group (see Table 2).  

Table 2. Sample description and differences between modelers with lower / higher process modeling knowledge 

 Low Process 
Modeling 
Knowledge 
(n=72) 

High Process 
Modeling 
Knowledge 
(n=84) 

Total 
(n=156) 

Statistical Test 

 Mean/ 
Number/% 

SD/% Mean/ 
Number/% 

SD/% Mean/ 
number 

SD/
% 

 

Gender 
Female 

Male  

 
38 
34 

 
53% 
47% 

 
17 
67 

 
20% 
80% 

 
55 

101 

 
35% 
65% 

- 

Age 22.58 3.18 24.74 4.01 23.74 3.79 - 
Highest degree 
completed 

      

- 
High school 31 43% 19 23% 50 32% 

One or more years of 
university 

36 50% 48 57% 84 54% 

Bachelor 4 6% 10 12% 14 9% 
Master 1 1% 7 8% 8 5% 

Process modeling test 
score 

38% 0.13 81% 0.08 61% 0.24 Tdf=153=-25.03 p=0.000 

Amount of process 
models created or read 

4.08 11.02 29.70 49.18 17.88 38.92 Tdf=154=-4.33, p=0.000 

Amount of modeling 
training (in hours)  

6.96 19.83 26.46 30.36 17.51 27.74 Tdf=144=-4.50, p=0.000 

4 Data Preparation 

In a first step, we analyzed the quality of the reasoning tasks from a test-theoretical point of view. For 

this purpose, we calculated two indicators: the discrimination coefficient (the correlation between single 

item and total score of a subject) and discrimination index (the difference between the extreme groups 

of the 27% best and worst subjects, based on the total score, cf. Matlock-Hetzel, 1997). As cut-off value, 

we used the critical value of 0.17 (that results from considering a significant Pearson correlation on a 
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5% significance level for a one-tailed test and a sample size of 90) for the discrimination coefficient and 

0 for the discrimination index. A negative discrimination index or a non-significant correlation between 

a single item and the total score indicates that generally low-performing subjects scored better on a task 

than high-performing ones. Such a result suggests that the wording of items might have been unclear or 

ambiguous. On the basis of this analysis, we excluded three of the 64 comprehension questions that did 

not meet the defined criteria. 

5 Results 

In this section, we report on the results relating to our hypotheses. For this purpose, we performed two 

multivariate analyses of covariance (MANCOVA) tests, using SPSS 11. The objective and subjective 

cognitive difficulties of the modelers with lower and higher modeling knowledge were used as 

dependent variables so that process modeling knowledge (lower vs. higher) was a within-subject factor 

for each MANCOVA. We included three independent variables in each of the two analyses (for the 

dependent variables – objective and subjective cognitive difficulty): (i) control-flow patterns with five 

levels (Sequence, AND, XOR, Loop, Compound), (ii) validity of conclusion with two levels (valid, 

wrong), (iii) existence of a cut vertex (existent, nonexistent) and one covariate – the process structure 

tree distance. Table 3 provides all results (F and η² are omitted in case of non-significant results with 

p>0.11).  

Table 3. Experimental results: Influence of deductive reasoning tasks on cognitive complexity. [Please note that the 
term “subject” in the table refers to reasoning tasks, not to the participants who had answered them.] 
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Dependent  
Variable 

Factor F (dfHypothesis. 
dfError) 

p 
 

η² 

Objective Cognitive  
Difficulty (%) Within-Subject Effect Process modeling knowledge 8.051,53 0.006 0.13 

 Between-Subject Effect Control-flow pattern 3.191,53 0.02 0.19 

  Element Interactivity: process 
structure tree distance 22.081,53 0.000 0.29 

  Element interactivity: cut-vertex  >0.11  
  Validity of conclusion 7.531,53 0.008 0.12 

 Interaction Effect Process modeling knowledge * 
control-flow pattern 2.711,53 0.04 0.17 

  Process modeling knowledge * 
process structure tree distance  >0.11  

  Process modeling knowledge * cut-
vertex  >0.11  

  Process modeling knowledge * 
validity of conclusion  >0.11  

Subjective Cognitive 
Difficulty Within-Subject Effect Process modeling knowledge 22.581,53 0.000 0.30 

 Between-Subject Effect Control-flow pattern 1.991,53 0.11 0.13 

  Element interactivity: process 
structure tree distance 17.791,53 0.000 0.25 

  Element interactivity: cut-vertex  >0.11  
  Validity of conclusion  >0.11  

 Interaction Effect Process modeling knowledge * 
control-flow pattern  >0.11  

  Process modeling knowledge * 
process structure tree distance  >0.11  

  Process modeling knowledge * cut-
vertex  >0.11  

  Process modeling knowledge * 
validity of conclusion  >0.11  

 

5.1 Process Modeling Knowledge 

Concerning hypothesis 1, we observed (from Table 3) that modelers with lower modeling knowledge 

performed significantly worse on the deductive reasoning tasks (F1,53=8.05, p=0.006) and rated them 

more difficult (F1,53=22.58, p=0.000) than did modelers with higher process modeling knowledge. 

Therefore, we revealed strong evidence for hypothesis 1. 

5.2 Control-Flow Patterns 

Hypothesis 2 had predicted that the type of control-flow patterns that were involved in answering a 

question had an influence on cognitive difficulty. MANCOVA results indicated that there was, in fact, 

an impact of different control-flow patterns on the objective difficulty (F1,53=3.19, p=0.02). The results 

further suggest that there is a trend-wise effect on subjective difficulty (F1,53=1.99, p=0.11); albeit we 

note that this result is not significant at the p=0.05 level. Thus, hypothesis 1 is supported concerning 

objective difficulty (percentage of correct answers) but only tentatively with respect to subjective 

(perceived) difficulty. In addition, there is an interaction effect between experience and the difficulty of 

control-flow patterns. Figure 4 demonstrates that the percentage of correct answers of modelers with 
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lower process modeling knowledge was between 6 and 11% lower than those of modelers with higher 

process modeling knowledge, with one exception: reasoning tasks involving Loops. Modelers in the 

“lower knowledge” group solved only 54% of those tasks correctly, whereas modelers in the “higher 

knowledge” group solved 78% of these tasks correctly (i.e., 24% more). For reasoning tasks that 

required understanding the basic Sequence pattern only, we obtained the smallest difference between 

both groups (6%).  

We performed a post-hoc analysis (Fisher's Least Significant Difference test) to determine which types 

of control-flow patterns significantly differ from each other. Figure 4 and Figure 5 depict descriptive 

results of cognitive difficulty of control-flow patterns. First, we turn to results concerning objective 

difficulty. In general, tasks were most difficult if they demanded to understand Loops, followed by 

Compound control-flow patterns (a combination of at least two patterns other than Sequence), AND and 

XOR. Tasks for which only the control-flow pattern Sequence had to be understood were the easiest. 

Loops were significantly more difficult to understand than Sequence (Mean Diff=17.66, SD=5.21, 

p=0.001) and XOR (Mean Diff=12.33, SD=6.15, p=0.05). AND (Mean Diff=7.03, SD=3.16, p=0.03) 

and Compound control-flow patterns (Mean Diff=15.24, SD=4.73, p=0.002) were both more difficult 

to understand than Sequence alone. 

Concerning subjective cognitive difficulty, Compound patterns (a combination of more than one XOR, 

AND and Loop) were most difficult; they were significantly more difficult than Sequence (Mean 

Diff=0.68, SD=0.20, p=0.001), AND (Mean Diff=0.52, SD=0.22, p=0.02) and XOR (Mean Diff=0.64, 

SD=0.25, p=0.01). Additionally, Loops were more difficult than Sequence (Mean Diff=0.54, SD=0.22, 

p=0.02). 

The results also lend support to hypothesis H2a, which had predicted that the control-flow pattern 

Sequence has a lower cognitive difficulty than other control-flow patterns. H2b had predicted that 

reasoning tasks, for which a combination of more than one control-flow pattern (other than Sequence) 

had to be understood, were more difficult than if only a single control-flow pattern was involved. H2b 

was partly supported for subjective difficulty, but not supported for objective difficulty.  
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 Figure 4. Different control-flow patterns and objective cognitive difficulty (percentage of correct answers). 

 

 

Figure 5. Different control-flow patterns and subjective cognitive difficulty (scale for perceived difficulty from 
1=''very easy'' to 7=''very difficult''). 

5.3 Element Interactivity 

Two parameters were used to measure element interactivity: (i) the process structure tree distance and 

(ii) the existence of a cut-vertex. In line with our expectations, the process structure tree distance was a 

significant influence factor for subjective (F1,53=17.79, p=0.000) and objective difficulty  (F1,53=22.08, 

p=0.000). The higher the process structure tree distance, the lower the percentage of correct answers and 

the higher the subjective cognitive difficulty. Figure 6 shows the percentages of correct answers, and 

Figure 7 provides the average results on the perceived difficulties across different process structure tree 

81%

54%

72% 75%

63%

87%
78% 82% 82%

74%

20%

30%

40%

50%

60%

70%

80%

90%

Sequence Loop AND XOR Compound
Control-Flow Pattern

Low Process Modeling Knowledge
High Process Modeling Knowledge

4.57
3.96

4.52 4.64
3.83

5.22
4.80 5.00 5.12

4.65

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Sequence Loop AND XOR Compound
Control-Flow Pattern

Low Process Modeling Knowledge
High Process Modeling Knowledge

very 
difficult

very 
easy



24 
 

distances. However, the existence of a cut-vertex did not significantly influence cognitive difficulty. 

Therefore, hypothesis 3 was only partially supported. 

 

Figure 6. Process structure tree distance and objective cognitive difficulty (percentage of correct answers). 

 

Figure 7. Process structure tree distance and subjective cognitive difficulty (scale for perceived difficulty from 
1=''very easy'' to 7=''very difficult''). 

5.4 Validity of Conclusion 

Hypothesis 4 proposed that valid deductive reasoning tasks would be easier to answer than invalid ones. 

As Table 3 indicates, the validity of the conclusion did have a significant effect on objective but not on 

subjective difficulty. Contrary to expectations, however, we can derive from Figure 8 that valid 

reasoning tasks were more difficult to answer than invalid/wrong tasks. Concerning subjective 

difficulty, descriptive results pointed into the same unanticipated direction (see Figure 9). Thus, 

hypothesis 4 was not supported. 
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Figure 8. Validity of conclusion and objective cognitive 
difficulty (percentage of correct answers). 

 

Figure 9. Validity of conclusion and subjective cognitive 
difficulty (scale for perceived difficulty from 1=''very 

easy'' to 7=''very difficult''). 

Table 4 provides an overview of the results revealed regarding the hypotheses 1-4. 

Table 4. Summary of hypothesis testing results. 

 Independent Variable Dependent Variable:  
Cognitive Difficulty 

Results 

H1 Process modeling 
knowledge 

Objective Supported 

  Subjective Supported 
H2 Control-Flow Pattern Objective Supported 
  Subjective Supported 
H2a “Sequence” patterns are 

easier than other patterns 
Objective Supported (easier than Loops, AND and Compound 

patterns) 
  Subjective Partly Supported (easier than Compound patterns 

and Loops) 
H2b “Compound” patterns are 

more difficult than other 
patterns 

Objective Not Supported (only more difficult than Sequence) 

  Subjective Partly Supported (more difficult than Sequence and 
XOR) 

H3 Element Interactivity Objective Supported for process structure tree distance but 
not for the existence of a cut-vertex 

  Subjective Supported for process structure tree distance but 
not for the existence of a cut-vertex 

H4 Validity of conclusion Objective Not Supported  (significant influence, but reverse 
effect) 

  Subjective Not Supported 

6 Discussion 

This study aimed at assessing the importance of influence factors for deductive reasoning on the basis 

of process models. We identified a number of interesting results.  

First, a main finding was that deductive reasoning tasks differ in their cognitive difficulty dependent on 

the control-flow patterns required to answer them. In general, reasoning tasks only demanding an 

understanding of the control-flow pattern Sequence were the easiest, followed by XOR and AND, and 
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Compound patterns and Loops were the most difficult. The present finding is partly consistent with the 

cognitive weights proposed by Shao and Wang (2003) concerning Sequence, XOR and Loop. However, 

contrary to their proposal, we did not reveal any evidence that AND would be the most difficult pattern. 

An explanation for this discrepancy could be that parallel execution (concurrency) in programming code 

is harder to understand than its visualized counterpart in a process model. The findings of the current 

study also do not support the ideas of Sánchez-González et al. (2012), who claimed that XORs are more 

difficult to understand than ANDs in a process model. We could not reveal empirical evidence for a 

difference of cognitive difficulty between AND and XOR, which was in line with our prediction, as there 

do not exist strong theoretical considerations which would suggest any difference.  

Second, another important finding was that element interactivity is positively related to reasoning 

difficulty. While we were unable to find a significant confirmation regarding the existence of a cut 

vertex, we obtained strong support for our hypotheses regarding a process structure tree distance. This 

effect has not been studied so far but is comparable to the discussion of whether the nesting level in a 

process model has an influence on its understandability. Mendling et al. (2007b; 2011) did not find a 

significant relationship between the nesting level and the understandability of a model. However, while 

Mendling et al. regarded the nesting level as a global attribute of a process model, we related the process 

structure tree distance to the model elements that we asked for. We argue that it is important to consider 

local parameters for assessing element interactivity. Even if a process model includes deeply nested 

structures, single comprehension tasks might include only neighbored elements in a specific submodel 

of the overall model, and thus their difficulty would not be a representative indicator for the model as a 

whole. As a consequence, we suggest to pay closer attention to the model parts actually relevant to 

answer a specific reasoning task. The rest of the complex model may have an effect on cognitive 

difficulty of a reasoning task. Yet, the source of cognitive load is different insofar that it mainly 

complicates the search and identification of relevant model structures. 

While our results support the hypothesis that process structure tree distance positively influences the 

difficulty of a task, it remains unclear whether these results can be generalized to higher process structure 

tree distances. One unanticipated finding was that the approximately linear relationship between 
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reasoning difficulty and process structure tree distance did not continue for process structure tree 

distances higher than five. A possible explanation for this is that the amount of reasoning tasks was 

lower for high process structure tree distances. This is because we had opted for process models of 

“average” size and complexity. We recognize that larger models would be necessary for positing 

reasoning tasks with higher element interactivity and for empirically determining how the relationship 

continues above a process structure tree distance of five. Based on theoretical considerations and 

empirical research on the negative effect of model size on comprehension (Mendling et al., 2007a; 

Mendling et al., 2010a), it is, however, likely that cognitive load increases even further for higher 

element interactivities. 

In the following section, we want to discuss results concerning cut vertices. In contrast to our results, a 

similar experiment by Mendling and Strembeck (2008) provided support for the hypothesis that a 

process model with more cut-vertices is more easily understood, while further studies (Mendling et al., 

2007b) yielded inconsistent results on this topic. In our study, 79.9% of the questions about two activities 

separated by a cut-vertex had been answered correctly, compared to 75.8% of the questions about two 

activities without a cut-vertex. While this, in fact, points to a trend into the expected direction, it was 

not statistically significant. However, it is still possible that, when repeating the study with a larger 

number of models with a cut-vertex, a significant effect could be revealed. In our study, 22 out of 61 

reasoning tasks had cut vertices. Future studies regarding this question will be required. 

In line with our predictions and with previous research (Mendling et al., 2012), we also found that 

modeling knowledge reduced the objective and subjective cognitive difficulty of reasoning on basis of 

a model. Modelers with higher process modeling knowledge performed better than modelers with lower 

process modeling knowledge in all deductive reasoning tasks. Additionally, we found that loops were 

especially difficult for the group with lower process modeling knowledge. A possible explanation for 

this result is that advanced modelers have already acquired cognitive schemas for this control structure 

(Détienne, 1990).  

Surprisingly, the results we obtained concerning the validity of the reasoning task were contradicting 

our original hypotheses and indicated that wrong deductive conclusions were easier to identify than 
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correct ones. A possible explanation for this finding might be that in some cases of wrong deductive 

conclusion, it might be quite obvious that it cannot hold true in the context of the model, and a falsifying 

argument can easily be found. In contrast, verifying a conclusion might be harder, as it demands the 

ruling out of all possibly falsifying arguments. This explanation is in line with research that has shown 

that falsification strategies are especially relevant to achieve insight into a reasoning task (Johnson-Laird 

and Wason, 1970). One suggestion based on this finding is that in order to improve understanding, one 

could provide additional information on the most important constraints and impossible process 

executions to a process model. 

7 Limitations 

In this section, we will consider the common caveats associated with laboratory experiments and specific 

limitations of our study, in particular possible threats to validity based on Wohlin et al. (2000). 

One potential weakness of this study is the selection of subjects. We recognize that the fact that our 

sample was drawn from business school students might limit external validity. However, we believe it 

was more important to assure that random heterogeneity of subjects was low – which could be a potential 

threat to conclusion validity – by choosing a homogenous group of students. Moreover, the similarity of 

the sample to other process model comprehension studies (Figl et al., 2013a; Figl et al., 2013b; Mendling 

et al., 2012) eases comparison of results. 

A threat regarding external validity related to the fact that the subjects in this study were not exposed to 

time constraints, which does not have to reflect the situation when process models are applied in the real 

world.  

Concerning internal validity, the selection of modelers might underestimate the true relationship 

between process modeling knowledge and cognitive difficulty of reasoning. A selection of experts with 

higher practical experience might lead to even stronger performance differences between the group “less 

process modeling knowledge” and the group “more process modeling knowledge”. However, the 

modelers with higher knowledge in our sample were sufficiently experienced to perform significantly 
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better than the comparison group, and, therefore, we believe that the selection of groups was well suited 

to reach clear-cut results for our research questions.  

Concerning construct validity, we like to discuss the selection of reasoning tasks. A general problem 

when constructing deductive reasoning tasks is that “logic allows an infinite number of different 

conclusions to follow validly from any premises” (Johnson-Laird, 2010). On the other hand, a specific 

process model with a semantic meaning sets structural constraints that limit the types of questions that 

can be asked. Therefore, not all combinations of reasoning tasks concerning different control flow 

patterns might result. To ensure that operationalizations actually measure the theoretical constructs, we 

used various reasoning tasks on four different models for each control-flow pattern. However, it was 

difficult to find reasoning tasks for which the knowledge of only one concept was not sufficient to solve 

(Compound patterns). Furthermore, in constructing the test material, we decided to use pairs of activities, 

which were either close (as a rough guide approximately one activity between them) or distant (>one 

activity between them) according to the spatio-visual distance. This variation of the location of model 

elements was mandatory to achieve reasoning tasks differing in “element interactivity”. Still, it was 

difficult to find reasoning tasks with very high element interactivity, since it was also limited by the size 

of the models. 

We opted for presenting models with textual labels in a verb-object labeling style (Leopold et al., 2013) 

in order to research reasoning on models which are similar to “real” business process models. However, 

we acknowledge that using reasoning tasks with meaningful process element labels instead of abstract 

labels may have lead to situations where subjects based their inference on domain knowledge instead of 

relying on the process model only. Also, reasoning problems might arise from problems to understand 

a label text. We used models from several domains (as suggested by Aranda et al. (2007)) as well as 

different combinations of question types and process elements with the aim to limit this effect. 

Replications of the study (e.g. using abstract labels or using reasoning tasks which would be answered 

differently based on domain knowledge than based on a given process model) can help to research the 

mediating context effect of textual labels on identifying deductive conclusions derived from a process 

model as correct or wrong. 
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The reader should also bear in mind that based on the possibility to guess correct answers, percentages 

of correctly solved reasoning tasks might be artificially increased, and therefore, should not be 

interpreted in an absolute sense, but only in relation to values of the same question type. While this 

problem cannot completely be eliminated, in order to lower guessing probability, we had also included 

the option “I don't know”.  

8 Implications for Research 

The current findings add substantially to our understanding of the cognitive difficulty of process models. 

In addition, our article provides a new understanding of process model comprehension questions as 

deductive reasoning tasks.  

A lot of empirical work on the understandability of process models has been undertaken in recent years. 

A survey of this research field (Houy et al., 2014) shows that the most frequently used method for 

measuring understandability so far has been to ask questions that aim to test the comprehension of the 

models. Interestingly, many of the current studies have not discussed the selection of questions in detail, 

which seems to indicate that it is common practice to “randomly” select comprehension questions.  

Melcher et al. (2010) pointed out that results obtained by such an experimental design should be 

validated (see also Laue and Gadatsch, 2011). They further suggested to include questions relating to 

different aspects of understanding the relations between activities in a model (order, concurrency, 

exclusiveness, and repetition). Our results strongly support this suggestion by providing empirical 

evidence that the selection of the model elements involved and their interrelations have an influence on 

the difficulty of a question. Moreover, our work adds one more perspective: As we have shown, element 

interactivity has an influence on understandability and interactivity should be taken into account when 

selecting comprehension questions. In particular, when asking questions that aim at measuring the 

understandability of two models, the models can be compared in a valid way only if the questions are 

not too divergent from one another (from an element interactivity perspective). 

If only questions with a small range of element interactivity are used, the results of such an experiment 

cannot be generalized when reasoning about questions for which an element interactivity out of this 
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range has to be considered. With our suggestions on the relevance of balanced selection and construction 

of questions, we contribute another aspect to existing guidelines for experiments on the 

understandability of process models (such as Patig, 2008). Another implication of our findings is that 

researchers need to exercise caution when interpreting existing studies in which the effect of element 

interactivity has not been considered when constructing comprehension questions. Consequently, 

replications of comprehension studies (with a more balanced set of questions) might shed light on 

inconsistent results and answer unresolved issues. 

By introducing the concept of local complexity measures, we hope to open a new strand of research in 

the field of complexity metrics for business process models. While the current global complexity metrics 

such as those presented in Mendling et al. (2007b) can only suggest that a model might be difficult to 

understand, local metrics could be used to pinpoint the parts of the model that can cause understanding 

problems.  

Furthermore, our results on differences in understanding the different control-flow patterns could also 

be used to adjust parameters used in global complexity metrics that build on the differences in 

understanding of the various building blocks of a business process model (as suggested by Lassen and 

van der Aalst, 2009). 

Another remarkable result regarding complexity metrics is that the workflow patterns related to loops 

(the arbitrary cycle and structured loop pattern) seem to be more difficult to understand than the 

exclusive choice pattern. However, all these patterns have in common that the control flow is built from 

an XOR-split/XOR-join pair. We conclude that complexity metrics that just count the number of XOR 

gateways or the number of XOR-splits (without asking to which kind of workflow pattern the gateway 

belongs to, used for example in Rolon et al. (2009) and Mendling et al. (2006)), should be questioned. 

Our results suggest that measures such as “number of exclusive choices (which are not loop exits)” 

would work better than the “number of XOR-splits”. 

Several research opportunities emerged from our study. Further experimental investigations could 

consider factors such as model size variations, abstract versus concrete labels and high practical 

modeling experience in order to establish an integrative understanding of determinants of deductive 
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reasoning performance. It would be interesting to include comprehension parameters as time needed to 

answer each reasoning task (Houy et al., 2012) in a computer-based assessment. Additional studies could 

validate our results based on a larger number and variety of deductive reasoning tasks. As fellow 

scholars have already collected a variety of data sets with answers on process-model comprehension 

questions, we suggest re-analyzing these data sets on item level with the research questions presented 

in this paper.  

9 Practical Implications 

The presented findings are of direct practical relevance. When we better understand the influence of 

cognitive load on the comprehensibility of a model, it will be possible to manage cognitive load and – 

in the end – to obtain models that are more helpful for communication. This has implications for business 

process modeling practice and education and for the potential to promote acceptance and use of process 

models in organizations.  

Reducing unnecessary cognitive load can help to make the process model more understandable. 

Cognitive Load Theory suggests that the information presented in a model should be structured in a way 

that the reader can reduce the cognitive load by assimilating groups of model elements. Our work 

provides empirical evidence that high interactivity of elements may improve cognitive load and lower 

comprehensibility of process models. Thus, we further encourage model tool designers to provide 

options for syntax highlighting. (Reijers et al., 2011) describe a method to use different colors for 

identifying split-join pairs belonging together. This provides users with a visual cue to improve 

comprehensibility of deeply nested blocks. 

To support the modeler, it has been suggested that model editors calculate (global) complexity metrics 

and warn the modeler when they exceed a certain threshold (Sánchez-González et al., 2012). However, 

even more useful than reporting the overall complexity is to inform the modeler which parts of the model 

are likely to raise comprehension problems. By introducing the concept of local complexity measures, 

we step further into this direction. A model editor could then highlight the parts of a model that might 

impose difficulties. 
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Visualizing the nesting level of software has been found to be a useful support for computer 

programmers (Ball and Eick, 1996). It can serve as a comprehension aid and as an indicator for code 

elements that are difficult to understand. For textual documents, there are tools that measure and 

visualize complexity and suggest how the readability can be improved (Newbold and Gillam, 2008). In 

a similar way, we think that it could be helpful to highlight the parts of a process model that increase the 

interactivity between the elements in the model. 

However, tool support does not have to be restricted to locating parts of the model that can be difficult 

to understand. It is also feasible that the modeling tool suggests replacing this part by a more 

comprehensible behavior-equivalent model variant. Patterns for model modifications that aim to 

improve the understandability while preserving the behavior of a model have been described by La Rosa 

et al. (2011). The authors of this work discuss that “automated support to suggest [a complexity reducing 

pattern] for increasing the understandability is missing in the current generation of process model 

editors.” The concept of local model complexity can spur new generations of such editors which detect 

the parts of a model that can impose understandability problems and suggest improvements.  

Future research is needed to determine valid and reliable values for the cognitive difficulty of 

understanding specific relations model fragments (control-flow patterns as for instance sequence or 

loop). These values could finally rate the understandability of models without the need for user 

evaluation. Looking ahead, exact comprehension values could then be used to guide modeling tool 

developers to provide feedback on the cognitive difficulty of models to users.  

Last but not least, the percentage of wrong answers given by modelers with lower process modeling 

knowledge to questions related to the different control-flow patterns allows for conclusions on how to 

teach business process modeling. In particular, it seems to be important to discuss non-trivial models 

with loops. Also, we recommend providers of modeling trainings and lecturers to draw their attention 

to teach students of the constraints of information processing in human memory and their implications 

for understanding models. 
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10 Conclusion 

This study is the first experimental analysis of influence factors on the cognitive difficulty of deductive 

reasoning tasks on the basis of a process model. Our work is an extension of existing literature, which 

has predominantly looked at global understandability of process models. With reference to the 

hypotheses posed at the beginning of this study, we can now state that interactivity of elements involved 

in a reasoning task is related to cognitive difficulty. Another major finding was that the difficulty of 

control-flow patterns varies with Loops as well as combinations of at least two patterns other than 

Sequence that are more difficult than XOR and AND. Modelers with lower process modeling knowledge 

perform worse on deductive reasoning tasks, and results suggest that they have specific difficulties with 

tasks including loops. It was also shown that it is easier to correctly identify a wrong conclusion than to 

verify a correct conclusion drawn on the basis of a model. Our work, moreover, assists in the 

understanding of possible comprehension problems in process models and can guide modeling tool 

developers to provide adequate feedback on the cognitive difficulty of model parts. 

From a more general perspective, our research serves as an initial contribution on human understanding 

of process logic concepts (notably parallel execution, loops and decisions), which can also be classified 

as fundamental ideas of the computer science discipline (Zendler and Spannagel, 2008) and represent a 

subset of humans’ “computational thinking” (Wing, 2008). Identifying cognitive difficulties in 

comprehending processes may ultimately lead to a better understanding of differences in how humans 

and computers “think”. 
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1. Appendix A: Example of Experimental Material: Model and 

Characteristics of Reasoning Task 

 

 

 

inform news 
agency

phrase press 
release

publish press 
release

retrieve drinking 
water samples

give the all-clear

build in 
disinfection 

system
buy new 

equipment clean containers dig off soil

organize 
announcements

inform 
customers in 
written form

prepare 
information 
brochure

control drinking 
water quality

inform the police

inform food 
supervisory 

office

clean water 
pipes

identify available 
hydrants

determine 
required water 

amount

prepare 
alternative 

supply

inform the major inform local 
doctor
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   Control  
Flow Pattern 

Element Interactivity Validity of 
Conclusion 

Item Wording Version Reasoning Task  
Process  

Structure-Tree 
Distance 

Cut 
Vertex  

“at the same 
point of time” 

A "Determine required water amount" and 
"inform the major" can be executed at the 
same point of time. 

AND 2 No Correct 

“at the same 
point of time” 

B "Inform news agency" and "phrase press 
release" can be executed at the same point of 
time. 

Sequence 1 No Wrong 

“in parallel” A "Inform local doctor" and "publish press 
release" can be executed in parallel. 

AND 2 No Correct 

“in parallel” B "Prepare alternative supply" and "publish 
press release" can be executed in parallel. 

AND 3 No Correct 

“as well as” A In one process instance "buy new 
equipment" as well as "dig off soil" can be 
executed. 

XOR 1 No Wrong 

“as well as” B In one process instance "clean water pipes" 
as well as "build in disinfection system" can 
be executed. 

XOR 2 No Wrong 

“mutually 
exclusive” 

A The process steps "build in disinfection 
system" and "clean water pipes" are 
mutually exclusive. 

XOR 2 No Correct 

“mutually 
exclusive” 

B The process steps "dig off soil" and "buy 
new equipment" are mutually exclusive. 

XOR 1 No Correct 

“more often 
than” 

A "Control drinking water quality" can be 
executed more often than "identify available 
hydrants". 

Compound 3 Yes Correct 

“more often 
than” 

B "Identify available hydrants" can be 
executed more often than "clean 
containers". 

Compound 5 Yes Correct 

“exactly as often 
as” 

A In each process instance "clean containers" 
is executed exactly as often as "retrieve 
drinking water samples". 

XOR 3 No Wrong 

“exactly as often 
as” 

B In each process instance "organize 
announcements" is executed exactly as often 
as "control drinking water quality". 

Compound 6 Yes Wrong 

“is executed 
before” 

A If "inform the police" as well as "inform 
food supervisory office" are executed in a 
process instance, then "inform the police" is 
executed before "inform food supervisory 
office". 

Sequence 1 No Correct 

“is executed 
before” 

B If "inform the police" as well as "give the 
all-clear" are executed in a process instance, 
then "give the all-clear" is executed before 
"inform the police". 

Sequence 4 Yes Wrong 

“has to be 
finalized before” 

A If "prepare information brochure" as well as 
"organize announcements" are executed in a 
process instance, then "organize 
announcements" has to be finalized before 
"prepare information brochure" can start. 

Sequence 3 No Wrong 

“has to be 
finalized before” 

B If "prepare information brochure" as well as 
"retrieve drinking water samples" are 
executed in a process instance, then "prepare 
information brochure" has to be finalized 
before "retrieve drinking water samples" can 
start. 

Sequence 3 Yes Correct 
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