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Importance Sampling to Accelerate the

Convergence of Quasi-Monte Carlo

WOLFGANG HÖRMANN AND JOSEF LEYDOLD

Department of Statistics and Mathematics

Vienna University of Economics and Business Administration

Importance sampling is a well known variance reduction technique for Monte Carlo simulation. For
quasi-Monte Carlo integration with low-discrepancy sequences it was neglected in the literature
although it is easy to see that it can reduce the variation of the integrand for many important
integration problems. For lattice rules importance sampling is of highest importance as it can be
used to obtain a smooth periodic integrand. Thus the convergence of the integration procedure is
accelerated. This can clearly speed up QMC algorithms for integration problems up to dimensions
10 to 12.

Categories and Subject Descriptors: G.3 [Probability and Statistics]:

General Terms: Algorithms

Additional Key Words and Phrases:

1. INTRODUCTION

A standard problem in scientific computing is the evaluation of the expectation of
a function q(x) with respect to a multivariate density f(x). The integral can be
written as

Ef(q(x)) =

∫

Rd

q(x)f(x) dx ,

where x = (x1, x2, . . . , xd) denotes a vector in R
d.

The direct way to solve our integral with Monte Carlo integration is to generate
a sequence of random vectors Xi with density proportional to f(x) and use the
sample mean of q(Xi) as an estimate of the value of the integral. If the generation
of the required sequence Xi is very difficult or impossible we can draw a sample Yi

from a similar density g(x) (called importance sampling density) and calculate a
weighted average of q(Yi) which is again an unbiased estimate of the integral. The
principle of importance sampling (IS) can be written as:

Ef(q(x)) = Eg(q(x)w(x)) =

∫

Rd

q(x)w(x)g(x) dx with w(x) =
f(x)

g(x)
.

Besides its application in situations where direct sampling of the target distribution
f should be avoided, importance sampling is also a well-known variance reduction
technique in stochastic simulations especially in the situation of rare events.
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The topic of this paper is the combination of importance sampling with quasi-
Monte Carlo (QMC) techniques where (pseudo-) random points are replaced by
low-discrepancy sequences (also called highly uniform point sets, HUPS). There is
hardly any literature on this approach; a discussion about fundamental properties
can be found in [Hörmann and Leydold 2005]. We therefore try to give a first answer
to the question of how to combine IS with QMC for solving integration problems.
Which are useful IS densities and how should we select their parameters? Which
low-discrepancy sequences are best suited for the combination with IS? Is IS able
to speed up QMC in general?

In this paper we are concentrating on the simple but important special case where
the random vector X has independent and identically distributed (iid.) components.
In this case the multivariate density f(x) is the n-fold product of the same univariate

density, f(x) =
∏d

i=1 f1(xi). Hence it is very natural to select the IS density g(x) as

a n-fold product of the same univariate density as well, g(x) =
∏d

i=1 g1(xi). Thus
the choice of the IS density is mainly a one-dimensional procedure but we will see
below that the dimension of the problem still has some impact. Notice that we also
can deal with distributions with dependent components of X within this framework
by means of some transformation of the random vector inside the function q(x).

The paper is organized as following: In Sect. 2.1 we shortly describe the choice
of IS densities for Monte Carlo integration as presented in the literature, whereas
Sect. 2.2 discusses qualitative considerations for combining IS and low-discrepancy
sequences. Section 2.3 demonstrates how IS can speed up the numerical integration
using lattice rules and demonstrates the practical importance of these considera-
tions on three examples each in dimensions 4, 8 and 12. Section 3 compares the
performance of numerical integration based on IS when using pseudo-random num-
bers (MC), low-discrepancy sequences and lattice rules for these examples.

2. PRINCIPLES FOR SELECTING THE IMPORTANCE SAMPLING DENSITY

2.1 Monte Carlo Integration

The question of proper choices of IS densities for Monte Carlo integration was stud-
ied in the literature, see e.g. [Geweke 1989] and [Hesterberg 1995]). The objectives
to select an IS density are clear: Evaluation of the density must not be expensive
and it allows for easy generation of random vectors. Moreover, the variance of the
MC estimator should be as small as possible.

As a first answer to this problem it is well known that the optimal IS density
is proportional to |q(x)|f(x). However, this result is not of practical relevance as
the integral below this function is not known. A more important observation is
that the variance of the IS estimator is only bounded if the tails of the IS density
are at least as high as the tails of f . Thus it is usually suggested to consider a
distribution family with sufficiently high tails and try to find a “good” parameter
value. In some cases it is possible to calculate the variance of the IS estimator as a
function of the parameter of the IS density or at least we can obtain an upper bound.
Then the optimal parameter can be found by solving an optimization problem. If
there is no bound for the variance available it is still possible to use an empirical
approach and compare the variances of pilot runs with different parameter values.
But this approach may be problematic as the estimate of the variance can be very
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unstable, especially if the tails of the IS density are not high enough. If a parameter
selection procedure is too time consuming or if different functions q(x) are going
to be integrated it is only possible to try to stick to the general rule: “Select an IS
density with a shape similar to f but with higher tails.”

2.2 Quasi-Monte Carlo Integration

We were not able to find much suggestions for the selection of IS densities for QMC
in the literature. For example, the natural question whether it is still sensible to
minimize the variance of the experiment was apparently neglected. As a matter of
fact in many QMC papers the authors do not even consider the possibility of im-
portance sampling. They just apply the inversion method for computing Ef(q(X))
in the framework of QMC. As low-discrepancy sequences are always defined for the
unit hypercube it makes sense to see how this approach can be rewritten in integral
notation. Denoting the inverse of the CDF of the univariate density f1 by F−1(ui)
and using the abbreviation F−1(u) = (F−1(u1), F

−1(u2), . . . , F
−1(ud)) we have:

Ef(q(x)) =

∫

(0,1)d

q(F−1(u)) du . (1)

It is easy to see that for a density with unbounded support and unbounded q(x) this
change of variables leads to an integrand that may be unbounded for ui = 1 or ui =
0. Thus the integrand has unbounded variation and the Koskma-Hlawka inequal-
ity, which is considered the main theoretical argument for using low-discrepancy
sequences, is no longer applicable. For densities with low tails this problem is of
little practical relevance (Owen [2006] gives a mathematical argument for this fact).
But it is very easy to get entirely rid of this problem by using importance sam-
pling. Analogously we denote the inverse of the CDF of the univariate density g1

by G−1(ui) and use the abbreviation G−1(u) = (G−1(u1), G
−1(u2), . . . , G

−1(ud)).
Then we can write the integral (1) with respect to u as

Ef (q(x)) = Eg(q(x)w(x)) =

∫

(0,1)d

q(G−1(u))w(G−1(u)) du .

It is enough that the tails of the IS density are higher than the tails of f and that
q(x) has no pole to guarantee that the IS integrand is bounded for both, ui = 0 and
ui = 1. This is a qualitative argument why importance sampling for distributions
with unbounded support is expected to work well with low-discrepancy sequences;
at least better than using the inversion method with the target distribution f .
Consider the example where f is the standard normal distribution and q(x) =
(x+1)2I(−1,∞) (I(a,b) denotes the indicator function of the interval (a, b)). Figure 1
shows the integrand with respect to u without IS (l.h.s.) and for IS where the IS
density g(x) is the density of the normal distribution with σ = 2. Clearly the
integrand has a pole at 1 for the naive algorithm but no pole when IS is used.

The bounded variation argument is a qualitative argument why IS should work
well with QMC but it does not supply us with any guidance how to find an optimal
IS density for QMC; to get rid of the pole for the integrand it is enough that the
IS density has tails not lower than the original density. Thus for low-discrepancy
sequences we have to use empirical evidence to decide if the application of IS can
really reduce the integration error. We tried all the integration problems of the next
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Fig. 1. The integrand with respect to u of Ef (q(x)) for q(x) = (x + 1)2I(−1,∞) and f(x) the
standard normal density: naive algorithm (l.h.s.) and IS with g(x) normal distribution with σ = 2
(r.h.s.).

section and the IS densities used there for the Sobol and the Niederreiter sequence
as implemented in the GNU Scientific Library [GSL]. The results showed that,
especially for intermediate and large dimensions (say larger than or equal to 8), the
optimal IS density for those two low-discrepancy sequences is very similar to the
optimal IS density for MC. The limited space does not allow to present the detailed
results but the overall performance of low-discrepancy sequences in comparison to
MC and lattice rules are presented in Sect. 3.

2.3 Lattice Rules

We started with very simple one-dimensional integrals to get an idea how to select
IS densities that are useful for QMC. We made experiments to see for which types
of functions on (0, 1) the integration error is small. Of course a constant function is
always integrated exactly, but these experiments reminded us of the fact that just
a few equally spaced points can be enough to integrate quite complicated smooth
periodic functions (that is for a function which is periodically continued on R).
To obtain a similar result for higher dimensions we have to use lattice rules (see
[Sloan and Joe 1994]), which allow for a convergence faster than O(N−1+ε) when
integrating smooth periodic functions. What is the connection to IS? We can try to
select the IS density such that the resulting integrand with respect to u is smooth
and periodic as we then have reasons to expect that the integration error is reduced
or the convergence is even accelerated. For lattice rules the integration error tends
to zero with rate O(N−α(log N)α d) for periodic functions (where roughly spoken
α = 1 for continuous and α = k+1 for k-times continuously differentiable functions).
This rate can be much faster than the well known worst case rate of O(N−1 logdN)
for low-discrepancy sequences.

Figure 1 is a first indication that IS is able to transform a non-periodic integration
problem into a smooth and periodic problem as the density and its derivative are
tending to 0 for u tending to 0 or 1. As an IS density with higher tails leads to
weights that converge to 0 faster it is easy to see that higher tails of the IS density
also imply that the integrand and several derivatives are 0 for u = 0 and u = 1.
This means that the integrand is smoother periodic if the tails of the IS density
are higher. This fact is illustrated by Figure 2 that shows the same integration
problem as Figure 1 but where σ has respective values 1.1, 3, and 5. Figure 2 also
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Fig. 2. The integrand of Figure 1 for g(x) normal with: σ = 1.2 (l.h.s.), σ = 3 (center) and σ = 5
(r.h.s.).

demonstrates the trade-off between smoothing and periodizing the integrand on the
one side and increasing the variance not too much on the other. Using larger values
for σ leads to a smoother periodic integrand whereas the variance of the Monte
Carlo estimator is increased.

We expect that the function q(x) and especially its smoothness properties play
an important role for the question whether IS with lattice rules can lead to a
considerable error reduction for QMC integration. Also the selection of the IS
density should have an impact on the integration error. For f standard normal the
most natural candidate for the IS density is a normal density with σ > 1; it has
the computational advantage that the evaluation of the weights is numerically very
simple and due to the larger variance this IS density leads to an integrand which
is 0 on the boundary of the unit cube and thus periodic. Other natural candidates
would be the logistic distribution or the t-distribution which both have higher tails
than the normal distribution and thus lead to an even smoother periodic integrand.

Sidi [1993] suggested a general approach for obtaining smooth periodic integrands
(see also [Sloan and Joe 1994, p. 36]). It makes use of the “sine transform”

φ(t) = t −
1

2 π
sin 2πt , φ′(t) = 1 − cos 2πt .

It can be used to obtain generally applicable IS densities that should be especially
well suited for lattice rules as φ′ is a periodic function that is integrated without
error by lattice rules. For a density f(x) with CDF F (x) this transformation leads
to the IS density

g(x) =
f(x)

φ′(F (x))
with w(x) = φ′(F−1(u)) and G−1(u) = φ(F−1(u)) .

If F−1(u) is available the algorithm using this IS density is very simple. Fast
algorithms that only require evaluation of the CDF F are available for this task,
see [Hörmann and Leydold 2003].

As a first example that demonstrates nicely the potential of combining IS with
lattice rules we try an integral with respect to a smooth function q(x).

2.3.1 Example: Calculating the covariance of a multinormal vector. To calcu-
late the covariance of two variables (e.g. variables 2 and 3) of a multinormal vector Y

with mean 0 we have to evaluate the expectation Ef (y2 y3) where f is the density of
the respective multinormal distribution. Note that similar calculations are common
in Bayesian statistics as the posterior distribution is often close to a multinormal
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Fig. 3. Covariance example: the common logarithm of the relative RMSE for calculating the
covariance is plotted against the base-2 logarithm of the sample size; The numbers in the plot
show the parameter σ used for the normal IS density; dimension 4 (l.h.s.) and dimension 12 (r.h.s)

distribution and the correlation of two variables is of interest as it is the correlation
between two parameter estimates. It is well known that a multinormal vector is
easily generated by transforming a standard normal vector with the Cholesky factor
of the variance-covariance matrix (see, e.g., [Hörmann et al. 2004]). We can thus
apply importance sampling directly to the standard normal vector X ; the function
q(x) is then a quadratic form in the xi’s and thus smooth. As variance-covariance
matrix we decided to take unit variances and all covariances equal to a fixed value
of ρ. To assess the integration error obtained for different IS densities and sample
sizes we repeated each integration 100 times for randomly selected values of ρ be-
tween 0.8 and 0.9 and calculated the relative root mean squared error of these 100
experiments.

In our experiments we used embedded lattice rules as suggested by Sloan and Joe
[1994, Chapt. 10] and also utilized the parameters and the error estimate introduced
there. We compared the “naive” algorithm (i.e. direct generation of the normal
variates without IS), the normal IS density with several values for σ > 1 and also
the sine transform. Figure 3 shows the resulting root mean squared error (RMSE)
for several values of σ (which resulted in small RMSE) for the normal IS density
together with the results for the naive algorithm and for the sine transform.

The results indicate that, contrary to the situation for MC and for other low-
discrepancy sequences (see Sect. 3), importance sampling really helps to reduce the
integration error when used together with lattice rules and a smooth function q(x);
comparing the results of “naive” with those of the best IS density the improvement
is really impressing and we can also clearly see the improved rate of convergence. As
the integrand of the naive experiment is not smooth when periodically continued
on R (in opposition to the other integrands) this nicely supports the conjecture
that lattice rules are superior only for smooth periodic functions. The results also
indicate (as expected) that the optimal IS density changes with the sample size and
especially with the dimension. The sine transform has worse performance than the
other IS densities for dimension 4 and better for dimension 12.

2.3.2 Expectations with respect to the exponential distribution. As second ex-
ample we consider the function
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Fig. 4. Exponential distribution example: axes like in Figure 3. The numbers in the plot show the
parameter b used for the Gamma(1/2) IS density; dimension 4 (l.h.s.) and dimension 12 (r.h.s)

q(x) =





(

d
∑

i=1

xi − c

)2


+

d
∑

i=1

(ai − xi bi)
2

and calculate its expectation with respect to a vector of iid. exponential variates.
For integrals with respect to a vector of iid. exponential random variates the

selection of the IS density g(x) is less obvious. To obtain an integrand that vanishes
for ui = 0 it is necessary that w(x) = 0 for x = 0. To reach that aim we need
an IS density with pole at 0. The Gamma(1/2,b) distribution, for example, is a
sensible choice. Note that nobody would suggest such an IS density for a MC
algorithm. In our experiments we chose the parameters ai and c randomly with
uniform distribution over (0.5, 2) and the parameters bi uniformly over (0.2, 0.4).
Again we repeated the experiment with 100 randomly selected parameter sets and
report the relative RMSE in Figure 4.

The results show similar to the experiment above that importance sampling
improves the lattice rule results by an impressive margin. The selection of the
“strange” Gamma(1/2) IS density for the exponential distribution is useful. How-
ever, in this experiment the sine transform leads to the best results.

2.3.3 Example: Option pricing for Asian Options. As a third example we present
the results of using importance sampling and lattice rules to evaluate the option
price of an Asian option using the geometric average, which allows for a closed-form
solution of the integral. (For option pricing by simulation see e.g. [Glasserman 2004]
or [Charnes 2000].) This example is quite different to the two above as the pay-off
function of an Asian option is continuous but not differentiable in each point.

The number of control points for an Asian option is equal to the dimension of
the integral; we select the control intervals equally spaced, the time to maturity
0.25 years, the risk free rate equal to 0.05; value at present is 100 and the exercise
price is randomly chosen from a uniform distribution over (98, 102), the volatility
uniformly over (0.2, 0.4). Figure 5 reports the RMSE calculated for 100 randomly
chosen parameter values.

Comparing with “naive” we can again see that IS is necessary for lattice rules to
reach good results. The choice of the best IS density is not clear here. It changes
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Fig. 5. Asian option pricing example; axes and labels like in Figure 3; dimension 4 (l.h.s.) and
dimension 12 (r.h.s)

with the sample size and with the dimension. The sine transform is again a good
choice but not better than using the normal distribution with a well chosen σ.

2.4 Quality of the Heuristic Error Bound

As pointed out by Sloan and Joe [1994] one important advantage of the method of
“embedded lattice rules” is that they allow the computation of a simple heuristic
error estimate. Thus we also checked the quality of this error estimate in our
experiments and noticed that, not astonishingly, the error estimate works better
for smooth integrands.

We calculated about 9000 integrals for each of our three examples. Analysis of
the error statistics of all these integrals for dimensions 4, 8 and 12 for the three IS
densities that lead to the smallest error and for all sample sizes we used showed
that:

—For the covariance example the percentage of errors larger than the true error is
about 1.3%.

—For the exponential distribution example the percentage of errors larger than the
true error is about 12%.

—For the Asian option pricing example the percentage of errors larger than the
true error is about 14%.

The observed error rate is small to moderate. So we may say that the error
estimate is useful but we should not trust it blindly.

3. COMPARING THE PERFORMANCE

We have seen above that the combination of IS with lattice rules works good for
small to moderate dimensions. We can even expect a faster rate of convergence if
the function q(x) is smooth and the dimension not too high. But for the practitioner
it is of more importance to see which method works best for moderate sample sizes
up to say 220 or 223 he is normally using for his real-world problems. In this section
we therefore compare the best IS lattice method with the best IS Monte-Carlo and
the best IS low-discrepancy sequence method. As a first comment it is interesting
that in all our examples IS is very important for the lattice methods as the integrand
is only smooth as periodically continued function when using IS. In contrast to the
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Fig. 6. Covariance example: dimension 4 (l.h.s.) and dimension 12 (r.h.s)
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Fig. 7. Exponential distribution example: dimension 4 (l.h.s.) and dimension 12 (r.h.s)

situation with lattice rules for the integration examples we tried (including the three
examples demonstrated here and four others) the difference between IS and naive
simulation is small for Monte Carlo and also for other low-discrepancy sequences.

Looking at Figures 6 to 8 we can see that for dimension 4 the situation is very
clear: IS lattice is superior to the other methods for the two smooth integrands as it
has a faster rate of convergence. The situation remains very similar for dimension 8
so we are omitting the corresponding figures here. For dimension 12 the situation is
different. For the covariance example the faster convergence is still clearly visible,
probably because the problem is in its nature only a 2-dimensional problem; but
even here the break-even point is for a sample-size above 220. For the exponential
distribution example and the Asian option pricing example the faster convergence
of the IS lattice method is no longer clearly visible for dimension 12. Nevertheless
IS lattice is the best among the methods we have tried.

Another finding from Figures 6 to 8 is that it does pay to use quasi-Monte
Carlo methods for well-behaved integrands if precise results are required. Even in
dimension 12 they are clearly superior to Monte Carlo.

4. CONCLUSIONS

To calculate the expectation of smooth functions with respect to a random vector
with iid. components the combination of lattice rules with importance sampling can
speed up the convergence of the numerical integration. The importance sampling
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Fig. 8. Asian option pricing example; dimension 4 (l.h.s.) and dimension 12 (r.h.s)

density must be selected such that the integrand is transformed into a periodic
function. For small dimensions the advantage of this approach is very clear and
for many smooth functions this combination remains superior to all (quasi-) Monte
Carlo methods up to dimension 12. This is also true for functions that are not
differentiable everywhere.
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