Martin Currie and Ingrid Kubin

Fixed price dynamics versus flexible price dynamics

Original Citation:

This version is available at: https://epub.wu.ac.at/114/
Available in ePub\textsuperscript{WU}: January 2005

\textsuperscript{WU}, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU.
Fixed Price Dynamics versus Flexible Price Dynamics

Martin Currie* and Ingrid Kubin**

Working Paper No. 89, January 2005

Abstract -- This paper contrasts the dynamical behaviors of fixed and flexible price regimes for a monopolistically competitive manufacturing sector in which firms base decisions on expectations about product demands.

Keywords: dynamics, fixed prices, flexible prices

JEL Classification: C62, D43, L13

* School of Economic Studies, Victoria University of Manchester, UK

** Corresponding Author: Prof. Dr. Ingrid Kubin, Department of Economics, Vienna University of Economics and Business Administration, Augasse 2-6, A-1090 Vienna, Austria
E-mail: ingrid.kubin@wu-wien.ac.at, Tel: +43 1 31336 4456, Fax: +43 1 31336 9209
1. Introduction

This paper compares the dynamical behaviors of fixed and flexible price regimes for an economy with a monopolistically competitive manufacturing sector in which firms base decisions on expectations about product demands. In the fixed price regime, manufacturers adhere to prices set at the beginning of each period, with disequilibria being manifested in divergences between outputs and demands. In the flexible price regime, outputs are sold at market-clearing prices, with disequilibria being manifested in differences between manufacturers’ planned prices and the market-clearing-prices.

Our analysis is in the spirit of Jin (2001), who examines the stability of a monopolistically competitive industry, where boundedly rational manufacturers follow simple strategies based on limited information. In contrast to Jin, we assume a technology and consumer preferences based on the famous Dixit-Stiglitz (1977) model. Given the widespread use of the Dixit-Stiglitz model in economic analysis [see Brakman and Heijdra (2004)], the lack of analyses of its short-run dynamics is surprising [an exception being Maussner (1992)].

2. Assumptions

The economy comprises a monopolistically competitive manufacturing sector with \( n \) firms producing different varieties, where \( n \) is sufficiently large that firms do not behave strategically, and a perfectly competitive residual sector. The invariant total labor supply is \( L_s \) and labor is instantaneously mobile between sectors. Production in the residual sector involves constant returns to scale. In contrast, manufacturing operates under increasing returns: each firm requires a fixed labor input of \( \alpha \) and has a constant marginal labor
requirement of $\beta$. Consumers devote an invariant share $\gamma$ of income to manufactures, with $\sigma > 1$ being the elasticity of substitution between varieties.

At the beginning of each time period, the duration of which corresponds to that of labor contracts, the labor market clears simultaneously with a forward market for the product of the residual sector, ensuring zero profits in that sector in each period. However, there are no forward markets for manufactures: labor demands are based on anticipated product demands. Faced by wage $w_t$ at the outset of period $t$, each manufacturer demands the labor needed to meet the product demand it expects at a price implied by the pricing routine $p_t = \theta w_t$, where $\theta = \beta \sigma / (\sigma - 1)$ is the familiar Dixit-Stiglitz wage-price mark-up. For each price regime, we consider two possible anticipated demand curves for a variety based on information the manufacturer has about the demand $d_{t-1}$ at price $p_{t-1}$. The first is the non-linear anticipated demand curve:

$$d^a_t(p_t) = \left( \frac{p_{t-1}}{p_t} \right)^\sigma d_{t-1}$$  \hspace{1cm} (1)

where, in using the perceived price elasticity $-\sigma$ to determine the expected impact of an own price change, each manufacturer assumes that the prices of other varieties will remain unchanged.

The second is the linear curve tangent to (1) at $(p_{t-1}, d_{t-1})$:

$$d^a_t(p_t) = (\sigma + 1)d_{t-1} - \sigma d_{t-1} \frac{p_t}{p_{t-1}}$$  \hspace{1cm} (2)

which is defined for $p_t \leq p_{t-1}(\sigma + 1)/\sigma$. Given the same prices for all varieties, the actual demand curve per variety is:
where \( Y \) is aggregate income.

### 3. Temporary Equilibria and General Equilibrium

**Temporary equilibrium with fixed prices**

For the fixed price regime, once labor contracts are signed, each manufacturer maintains a fixed price throughout the ensuing period. At the temporary equilibrium (TE) wage \( \hat{w}_t \), each manufacturer sets price \( \hat{p}_t = \theta \hat{w}_t \) and hires the labor needed to produce \( \hat{s}_t = d^a(\hat{p}_t) \), where \( d^a(\hat{p}_t) \) is derived by substituting in (1) or (2) the previous period’s fixed price \( \hat{p}_{t-1} \) and the corresponding quantity demanded \( \hat{d}_{t-1} \). The quantity sold of each variety is determined by the minimum of the supply and of the quantity demanded at \( \hat{p}_t \); i.e., by \( \min\{\hat{s}_t, \hat{d}_t\} \), where \( \hat{d}_t = d_t(\hat{p}_t) \) from (3). If there is excess demand, consumers are rationed. If there is excess supply, the surplus is destroyed (or, if firms identify the excess supply after entering into binding labor contracts but before actually using the labor, they simply reduce production).

**Temporary equilibrium with flexible prices**

For the flexible price regime, each manufacturer, having based labor hiring on a planned price, sells its output at the market-clearing price. At the TE wage \( \tilde{w}_t \), each supplies the demand it expects at its planned price \( p^p_t = \theta \tilde{w}_t \). That is, \( \tilde{s}_t = d^a(\tilde{p}^p_t) \), where \( d^a(\tilde{p}^p_t) \) is derived from (1) or (2) by substituting the previous period’s market-clearing price \( \tilde{p}_{t-1} \) and
the corresponding demand $\hat{d}_{t-1}$. Market-clearing in period $t$ implies that the (inelastic) supply of each variety is sold at price $\hat{p}_t = \frac{\gamma Y}{n s_t}$.

**General equilibrium**

A general equilibrium (GE) is a state of rest for the dynamical process concerned. For the fixed price regime, a TE is a GE iff $\hat{a}_t = \hat{s}_t$; this requires $d_i (\hat{p}_t) = d_i^u (\hat{p}_t)$ where $\hat{p}_t = \theta \hat{w}_t$. For the flexible price regime, a TE is a GE iff $\hat{p}_t = \bar{p}_i^\infty$ where $\bar{p}_i^\infty = \theta \hat{w}_t$; this requires $d_i (\hat{p}_t) = d_i^u (\bar{p}_i^\infty)$. That is, for both regimes, GE requires that each manufacturer correctly anticipates the quantity demanded at the price implied by the pricing routine. The GE wage, necessarily the same for both regimes, is identified in Figure 1. The curve $S_M$ shows the labor supply to the manufacturing sector after the derived labor demand of the residual sector is met. The curve $\bar{M}$ shows what the manufacturing sector’s labor demand would be at each wage, if manufacturers were to have correct product demand expectations at the price implied by applying the pricing routine to that wage. Derived from (3), $\bar{M}$ is also what the sector’s derived labor demand curve would have been if there had been a forward market for manufactures, synchronized with the labor market. The intersection of $\bar{M}$ and $S_M$ determines the GE wage $\bar{w}$, the corresponding price being $\bar{p} = \theta \bar{w}$. In the GE, the anticipated demand curve would be $\bar{m}'$ for (1) and $\bar{m}''$ for (2).

**4. Dynamics Compared**

The dynamical behaviors of the two regimes are dramatically different. Figure 2 shows this difference for the non-linear anticipated demand curve (1), assuming, for the purpose of the argument, that for both regimes $\hat{w}_{t-1} = \bar{w}_{t-1} > \bar{w}$, so that $\hat{L}_{M,t-1} = \bar{L}_{M,t-1} > \bar{L}_M$.
Fixed price regime

In Figure 2, manufacture’s labor demand curve in period $t$ is $\hat{m}_t$. Based on information on product demand $\hat{d}_{t-1}$ at the previous period’s fixed price $\hat{p}_{t-1} = \theta \hat{w}_{t-1}$, $\hat{m}_t$ must intersect $\bar{M}$ at $w^*_t = \hat{w}_{t-1}$; at that wage, manufacturers would set the same price as in period $t-1$ and their demand expectations would be correct. Therefore, there would be excess labor supply at $w^*_t = \hat{w}_{t-1}$. However, at $w^*_t = \bar{w}$, there would be excess labor demand since, for a fall in the wage from $\hat{w}_{t-1}$ to $\bar{w}$, manufacturers, who do not anticipate that others would also change their prices, would overestimate the impact of the corresponding price fall on demand and would demand too much labor at $\bar{w}$. Consequently, $\hat{w}_t$ must lie between $\hat{w}_{t-1}$ and $\bar{w}$. It follows that the sequence of TEs necessarily converges monotonically on the GE. This proposition carries over to the linear anticipated demand curve (1). It can be shown, for both (1) and (2), that:

$$0 < \frac{d\hat{w}_t}{d\hat{w}_t} (\hat{w}_t = \bar{w}) = \frac{\gamma \sigma^2 - 2 \gamma \sigma + \gamma}{\gamma \sigma^2 - 2 \gamma \sigma + \sigma} < 1 \quad (4)$$

Flexible price regime

In Figure 2, manufacture’s labor demand curve in period $t$ is $\bar{m}_t$. Based on information on product demand $\bar{d}_{t-1}$ at the previous period’s market-clearing price $\bar{p}_{t-1}$, $\bar{m}_t$ must intersect $\bar{M}$ at $\bar{L}_{t-1}$. Since $\bar{L}_{t-1} > L_M$, the market-clearing price in $t-1$ was necessarily below the GE price: $\bar{p}_{t-1} < \bar{p}$. At a current wage $w_t = \bar{w}$, there would necessarily be excess labor supply: manufacturers, who do not anticipate that others would change their prices, would overestimate the reduction in demand resulting from a price increase from $\bar{p}_{t-1}$ to $\bar{p}^* = \theta \bar{w}$
and would demand too little labor at \( \tilde{w} \). Consequently, the TE wage necessarily overshoots the GE wage, i.e., \( \tilde{w}_i > \tilde{w} \) implies \( \tilde{w}_i < \tilde{w} \). For the linear anticipated demand curve (2), the TE wage always moves in the direction of the GE wage but it need not overshoot it.

It can be shown that for both ADCs:

\[
\frac{\partial \tilde{w}_{i+1}}{\partial \tilde{w}_i} (\tilde{w}_i = \tilde{w}) = \frac{(\sigma - 1)(\gamma - 1)}{\gamma(\sigma - 1) + (1 - \gamma)} < 0
\]  

(5)

The stability condition, \((2\gamma - 1)\sigma > 3\gamma - 2\), is always satisfied for \( \gamma \geq 0.5 \). However, for \( \gamma < 0.5 \), a period-doubling bifurcation occurs as \( \sigma \) increases through:

\[
\sigma_m = 1 + \frac{1 - \gamma}{1 - 2\gamma}
\]

(6)

For (1), since the map \( \tilde{w}_i = f (\tilde{w}_{i-1}) \) is always monotonically declining, the system is always attracted to a period-two cycle for \( \sigma > \sigma_m \). In contrast, the dynamics of (2) exhibits complex behavior for \( \sigma > \sigma_m \). Figure 3 shows the map \( \tilde{w}_i = g (\tilde{w}_{i-1}) \) for \( \gamma = 0.25 \), \( Y = 10000 \), \( L_0 = 10000 \), \( n = 600 \), \( \alpha = \beta = 1 \), and \( \sigma = 4.58 \). The map is only defined for a wage above \( \tilde{w} = (1 - \gamma)Y/(L_0 - \alpha n) \); for a lower wage, there would be no labor available for production by the manufacturing sector after its own fixed labor requirements \( \alpha n \) and the derived demand of the residual sector have been met. The attracting period-three cycle is the hallmark of a chaotic dynamical system.

5. A Final Comment

We have compared the dynamical implications of alternative manufacturers’ routines, assuming an invariant number of firms. With free entry and exit of manufacturers,
a long-run general equilibrium would require a zero rate of profit. With entry and exit dependent on the anticipated rate of profit, complex dynamical behavior could arise even with a forward market for manufactures, synchronized with the labor market.

References


Maussner, A., 1992, Monopolistische Preisbildung und Nachfrageerwartungen in Makroökonomischen Modellen (Mohr, Tübingen).
Legends

Figure 1:

Labor market in general equilibrium.

Figure 2:

Comparison of fixed price and flexible price dynamics with labor demands based on non-linear anticipated product demand curves.

Figure 3:

Period-three cycle for the flexible price regime with labor demands based on linear anticipated product demand curves.
Figure 1
Figure 2
Bisher sind in dieser Reihe erschienen:

Feichtinger G., Dockner E., Cyclical Consumption Pattern and Rational Addictions, No. 5, Oktober 1991.


Gstach D., Data Envelopment Analysis in a Stochastic Setting: The right answer form the wrong model?, No. 29, August 1994.


Häfke Ch., Helmenstein Ch., Neural Networks in Capital Markets: An Application to Index Forecasting, No. 32, January 1995.


Altzinger W., Beschäftigungseffekte des österreichischen Osthändels, No. 34, July 1995.

Bellak Ch., Austrian Manufacturing Firms Abroad - The last 100 Years, No. 35, November 1995.


Zagler M., Long-Run Monetary Non-Neutrality in a Model of Endogenous Growth, No. 37, June 1996.

Traxler F., Bohmann G., Ragacs C., Schreckeneder B., Labour Market Regulation in Austria, No. 38, January, 1996.


Nowotny E., Dritter Sektor, Öffentliche Hand und Gemeinwirtschaft, No. 41, August 1996.


Häfke Ch., Sögner L., Asset Pricing under Asymmetric Information, No. 46, February 1997.


Wehinger G.D., Exchange Rate-Based Stabilization: Pleasant Monetary Dynamics?. No. 50, August 1997.


Huber C., Sögner L., Stern A., Selbstselektierendes Strompreisregulierungsmodell, No. 52, August 1997.


Gstach D., Grandner T., Restricted Immigration In as Two-Sector Economy, No. 55, March 1998.


Altzinger W., Austria's Foreign Direct Investment in Central and Eastern Europe: 'Supply Based' or Marked Driven?, No. 57, April 1998.


Ragacs Ch., Zagler M., Growth Theories and the Persistence of Output Fluctuations: The Case of Austria, No. 60, October 1998.

Grandner T., Market Shares of Price Setting Firms and Trade Unions, No. 61, October 1998.


Zagler M., Endogenous Growth, Efficiency Wages and Persistent Unemployment, No. 66, September 1999.


Grandner T., A Note on Unionized Firms' Incentive to Integrate Vertically, No. 70, May 2000.


Heise, A., Postkeynesianische Beschäftigungstheorie, Einige prinzipielle Überlegungen, No. 72, August 2000.


Bellak, Ch., The Investment Development Path of Austria, No. 75, November 2000.


Stückler M., Handel auf Terminkontraktmärkten, No. 80, July 2002.

Ragacs Ch., Minimum Wages, Human Capital, Employment and Growth, No. 81, August 2002.


Bellak Ch., The Impact of Enlargement on the Race For FDI. No. 86 Jan. 2004

Bellak Ch., How Domestic and Foreign Firms Differ and Why Does it Matter?. No. 87 Jan. 2004

Grandner T., Gstach D., Joint Adjustment of house prices, stock prices and output towards short run equilibrium, No. 88. January 2004

Currie M., Kubin I., Fixed Price Dynamics versus Flexible Price Dynamics, No. 89, January 2005