Katrin Rabitsch and Serhiy Stepanchuk and Viktor Tsyrennikov

International Portfolios: A Comparison of Solution Methods

Article (Accepted for Publication)
(Refereed)

Original Citation:

This version is available at: http://epub.wu.ac.at/5220/
Available in ePubWU: November 2016

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates referee comments.
International Portfolios: A Comparison of Solution Methods*

Katrin Rabitsch† Serhiy Stepanchuk‡ Viktor Tsyrennikov§

August 31, 2015

Abstract

We compare the performance of the perturbation-based (local) portfolio solution method of [Devereux and Sutherland (2010a, 2011)] with a global solution method. As a test suite we use model specifications that broadly capture features of international financial trade, between advanced economies, and between advanced and emerging economies. We consider both symmetric country setups and asymmetric setups, that capture important empirical facts such as differences in macroeconomic volatility, differences in portfolio composition, and high equity premia. We find that the local method performs well at business cycle frequencies, both in the symmetric and asymmetric settings, while significant differences arise at long horizons in asymmetric settings.

Keywords: Country Portfolios, Solution Methods, Portfolio Allocation

JEL-Codes: E44, F41, G11, G15

*We are grateful to Michael B. Devereux, Martin D.D. Evans, Michael Reiter, Alan Sutherland, and the seminar and conference participants at the SED 2013, CEF 2013, EEA 2013, and the 2013 European Commission - CEPR workshop on 'Current Account Imbalances and International Financial Integration' for helpful comments.

†Vienna University of Economics and Business. E-mail: katrin.rabitsch@wu.ac.at.
‡École Polytechnique Fédérale de Lausanne. E-mail: serhiy.stepanchuk@epfl.ch
§International Monetary Fund. E-mail: viktor.tsyrennikov@gmail.com
1 Introduction

This paper presents and evaluates two solution methods for computing optimal portfolios in dynamic stochastic general equilibrium (DSGE) settings with incomplete markets. The first is the perturbation-based local method of Devereux and Sutherland (2010a, 2011) (hereafter DS). This method, as its name suggests, guarantees desired accuracy locally, that is, in the vicinity of the approximation point (the non-stochastic steady state). The second is the global solution method as implemented in Stepanchuk and Tsyrennikov (2015). Global methods can achieve desired accuracy throughout the state space. This comes at the cost of having to use a non-linear equation solver that adds significantly to computation time. Global methods also require more significant investment in approximation techniques if the dimensionality of the endogenous state space is large. The DS method is faster, but its main advantage is that it builds upon the widely-used toolkit of a macroeconomist – a set of algorithms to compute the first and the second-order approximations to solutions of dynamic stochastic general equilibrium models, e.g., Schmitt-Grohé and Uribe (2003). Thus, it is relatively easy to apply in macroeconomic models extended to include a non-trivial portfolio choice. It provides easy-to-interpret expressions for optimal constant portfolios, referred to as steady-state portfolios, and for first-order portfolio dynamics. Available analytical partial results are helpful in building intuition about mechanisms at work.

The DS method has been widely adopted by the international macroeconomics and finance literature that until recently had ignored facts related to portfolio size and composition. Early models of international capital flows featured either incomplete financial markets with only one asset or complete financial markets. In the former case only net capital flows could be analyzed. In the latter case portfolios are constant and capital flows are absent unless preferences are time non-separable as shown by Judd et al. (2003). Moreover, financial trade is often cast in terms of fictitious Arrow securities that could not be linked to real assets. The DS method applies to models with both complete and incomplete markets and allows for arbitrary asset market structures. This methodological progress has allowed researchers to address the vast changes in the international financial landscape during the recent decades: the emergence and rapid growth of gross external positions, growing two-way capital flows, the role of portfolio re-balancing in determining net capital flows, and the potential influences of size and composition of gross portfolios on macroeconomic outcomes themselves through
exchange rate and asset price driven valuation effects.

Despite its wide-spread adoption, little is known about the accuracy of the DS solution method and, therefore, the ‘domain’ of its applicability. Our paper tries to fill this gap. To this end, we perform a comprehensive evaluation of the method against the global solution method. We compare solutions along the following dimensions: policy functions and Euler equation errors, simulated short time paths and moments, ergodic moments and wealth distributions, and welfare measures.

Our laboratory for the evaluation of the two methods is a two country model with labor and capital income endowments and an array of traded financial assets that includes domestic and foreign equities and a bond. Our test suite then consists of two special cases of this general model structure. The key difference between the two specifications is that in the first all assets pay nearly the same expected return, while in the second equities pay a sizeable risk premium.

Model specification 1 shuts down the bond market, becoming the setting analyzed in Devereux and Sutherland (2011). We analyze both symmetric and asymmetric economies. We think of the symmetric setting as modeling financial trade between similar advanced economies, e.g. France and the U.K. The DS method performs extremely well in this case, both at business cycle and at medium to long-run frequencies. We think of the asymmetric setting as modeling financial trade between advanced and emerging market economies, e.g. the U.S. and Brazil. The defining feature of emerging market economies is higher macroeconomic volatility as documented in Aguiar and Gopinath (2007). To capture this asymmetry we assume that the foreign country’s shocks are twice as volatile as those of the home country. We find that the DS method continues to perform well at business cycle frequencies, but that one needs to be cautious when using the method to characterize long-term (ergodic) properties of the model. This is a consequence of the fact that model characteristics such as cross-country differences in shock volatilities fail to pin down the aggregate wealth distribution (the net foreign asset position) at the approximation point of the deterministic steady state. This problem is frequently addressed by introducing a stationarity-inducing device, such as the endogenous discount factor (EDF). When comparing local and global solution method with inclusion of an EDF, we find that both solutions give rise to very similar results, even in terms of ergodic model properties. The EDF, however, strongly affects the model solution and dominates any economic forces that would otherwise lead to asymmetric ergodic NFA distributions. We demonstrate this in a version where the EDF is replaced by a borrowing limit under the global method: the stationary distribution in this case looks very different and the asymmetries are well reflected in it. So, we ask if in asymmetric settings the local solution can be improved upon by an appropriate choice of the approximation point. We find that iterative updating of an approximation point, as suggested by Devereux and Sutherland (2009), yields unsatisfactory results. Also, using the mean NFA computed under the global solution – which one could expect to serve as a better approximation point – does not lead to an improvement over using the symmetric deterministic steady state. We also discuss the relation to the ‘risky steady state’ literature, see Coeurdacier et al. (2011), Julliard (2011) and De Groot (2013). At a risky steady state returns of different traded assets are generally different from each other in asymmetric settings. We document that this precludes direct application of the DS solution formulas; so, we do not consider it.

Model specification 2 aims to address deeper asymmetries, that are key in capturing empirical observations of the financial trade between advanced and emerging market economies. The largest part of financial globalization has taken place in and between advanced economies.
However, the recent growth experience of large emerging economies, particularly large BRIC (Brazil, Russia, India, China) countries, means that emerging countries now also play a significant role in international financial markets. Advanced and emerging market economies display strong structural differences in the amount of risk these country groups face, be it because of different macroeconomic volatility they face or because of differences in financial market development as in Mendoza et al. (2009a). This could also be a result of the limited supply of safe assets in the emerging market economies, as emphasized by Caballero et al. (2006). The above mentioned economic differences result in heterogeneous NFA positions and compositions of external portfolios. Gourinchas and Rey (2013) document that advanced economies typically have a much higher share of ‘risky’ assets – defined as portfolio equity or FDI – on their asset side of the balance sheet than emerging economies. They also compute the net ‘risky’ position, the share of risky asset in the asset side of the external balance sheet minus the share of risky assets on the external liability side. The G7 economies are increasingly long in net risky assets, while the BRIC economies, particularly in the 1990s, have increasingly taken net short positions in risky assets: in 2010 the G7 economies’ net risky position stands at around 15% of GDP, and the BRIC economies’ position at around -30% of GDP, compared to being below plus and minus five percent in 1990 respectively. Most prominently, and contrary to neoclassical wisdom, the U.S. emerged as the world largest debtor that arguably holds the riskiest portfolio, earning a higher return on its assets than the rest of the world. Gourinchas and Rey (2007a) have coined the expression of the U.S. having become the world venture capitalist for this phenomenon.

Our model specification 2 aims to capture, in a stylized setting, such key ‘financial’ aspects of asymmetries in risk taking and a sizable equity premium (‘excess return’) in the simplest possible way. In this setup, the two economies can trade a risk-free bond and a risky claim to the foreign country’s capital income endowment. We allow risk attitudes to differ across countries as in Gourinchas et al. (2010) and Stepanchuk and Tsyrennikov (2015). We parameterize the model to obtain an equity premium comparable to that observed in the data. Diverse risk attitudes translate into different willingness to hold the risky and the safe asset. The less risk-averse (advanced) economy is more willing to hold the high risk/high return equity: so, it buys a larger share of the risky equity and sells the safe bond. The excess return that the less risk-averse country earns on average, allows it to accumulate net claims on the more risk-averse foreigners. Both the global and the local solution methods capture this effect well and generate equity premia that are close in magnitude. But the DS method somewhat understates the holdings of the risky asset. Therefore, under the local solution method wealth accumulation by the less risk-averse economy is also understated. But

5A widely used measure of de facto cross-border financial integration is the sum of external assets and external liabilities, scaled by GDP. Figure 1 in the appendix documents the development of this measure for advanced economies, for emerging markets economies, for the US, the BRIC economies, and China, based on the external wealth of nations dataset of Lane and Milesi-Ferretti (2001, 2007). Cross-border financial positions for advanced countries increased from 68.3% in 1980 to 463.2% in 2007. For emerging economies this measure of financial integration stood at 50.11% percent in 1980, and increased to 192.4% percent in 2007. Certain countries of the emerging economies group experienced particularly noteworthy increases in financial integration. E.g. for China this measure increased almost tenfold from 15.1% in 1981 to 113.5% in 2007.

6The share of ‘risky’ assets is 49% for the United States, 50% for Canada, 26% for the UK, and 31% for France. In contrast, India’s share of ‘risky’ assets stands at 5%, Indonesia’s at 5%, Russia’s at 18%, China’s at 9% and Brazil’s at 21%.

7Differences in attitudes toward risk can be thought of as a short-cut for a different ability to diversify idiosyncratic risk. Maggiori (2013) endogenizes differences in risk-aversion.
the difference is small, and our assessment is that, along short time paths, the DS method performs well. When characterizing the model’s ergodic properties, the global and the DS method obtain very different results. We reiterate on our finding from model specification 1: for this purpose, the DS method, being a local method, should be used with caution only.

The paper is organized as follows. Section 2 describes the general model framework. Section 3 discusses the local (DS) and global solution methods. Section 4 describes results from model specification 1 with both symmetric (4.1) and asymmetric (4.2) countries. We discuss the issues related to the choice of the approximation point in section 4.2.2. Section 5 discusses results from model specification 2 that considers more fundamental asymmetries between the two model economies, and a pronounced return differential. For the interested reader, we relegate some parts of our analysis – that go beyond the scope of the article – to an online appendix. Section 6 concludes.

2 Model
Here we describe the general features of the model that we consider in this paper, and later (in the corresponding calibration sections) discuss features and restrictions specific to model specifications 1 and 2. The model consists of two countries, labeled h and f. The representative agent of each country has preferences over a single consumption good. We abstract from modeling a production side, and assume that instead output arrives exogenously. In particular, uncertainty in the model is represented by four exogenous stochastic processes: \{Y^k_{ht}, Y^l_{ht}, Y^k_{ft}, Y^l_{ft}\} ≡ Y_t. They model home capital income, home labor income, foreign capital income and foreign labor income. All of the above are first-order autoregressive processes:

\[
\log \left(\frac{Y^k_{ht}}{\bar{Y}^k_h} \right) = \rho^k_h \log \left(\frac{Y^k_{ht-1}}{\bar{Y}^k_h} \right) + \varepsilon^k_{ht}, \quad (1)
\]

\[
\log \left(\frac{Y^l_{ht}}{\bar{Y}^l_h} \right) = \rho^l_h \log \left(\frac{Y^l_{ht-1}}{\bar{Y}^l_h} \right) + \varepsilon^l_{ht}, \quad (2)
\]

\[
\log \left(\frac{Y^k_{ft}}{\bar{Y}^k_f} \right) = \rho^k_f \log \left(\frac{Y^k_{ft-1}}{\bar{Y}^k_f} \right) + \varepsilon^k_{ft}, \quad (3)
\]

\[
\log \left(\frac{Y^l_{ft}}{\bar{Y}^l_f} \right) = \rho^l_f \log \left(\frac{Y^l_{ft-1}}{\bar{Y}^l_f} \right) + \varepsilon^l_{ft}, \quad (4)
\]

where \{\varepsilon^k_{ht}, \varepsilon^l_{ht}, \varepsilon^k_{ft}, \varepsilon^l_{ft}\} is a vector of i.i.d. innovations with zero mean, finite support and variance-covariance matrix Σ_ε. Aggregate output in country $a ∈ \{h, f\}$ is the sum of capital and labor income endowments: $Y_{at} ≡ Y^k_{at} + Y^l_{at}$.

The representative agent in country $a ∈ \{h, f\}$ values different consumption plans \{c_{at}\}_t according to the Epstein-Zin utility function:

\[
V_{at} ≡ \max_{c_{at}} \left[\left(1 - \beta \left(\bar{c}_{at} \right) \right) c_{at}^{1-\gamma_a} + \beta \left(\bar{c}_{at} \right) \left(E_t V_{at+1} \right) \right]^{\frac{1}{1-\gamma_a}}, \quad (5)
\]

where c_{at} is consumption, $\beta(\bar{c}_{at})$ is the endogenous discount factor, \bar{c}_{at} is the average consumption in country a, γ_a is the coefficient of risk-aversion, while $\lambda_a = \frac{1-\gamma_a}{1-\psi_a}$ with ψ_a being the intertemporal elasticity of substitution. When $\lambda_a = 1$, we get as a special case the time-additive expected utility CRRA preferences.

Financial markets trade claims to home and foreign capital income streams, as well as a one-period risk-free discount bond which pays one unit of consumption good and is in zero
Let \(q_{ht} \) be the price of this bond. Let \(q_{at} \) be the price of a claim to a stream of capital income \(\{ Y_{kt} \}_{t=1}^{\infty} \) produced in country \(a \in \{ h, f \} \). These prices will be sometimes referred to as countries’ stock market indices. The representative agent in country \(a \) then maximizes his life-time utility (5) subject to the following budget constraint:

\[
c_{at} + \theta^h_{ht} q_{ht} + \theta^f_{ft} q_{ft} + b_a^h q^b_t = \theta^h_{ht-1} (q_{ht} + Y^h_{kt}) + \theta^f_{ft-1} (q_{ft} + Y^f_{kt}) + b^a_t = \theta^h_{ht} - 1 (q_{ht} + Y^h_{kt}) + \theta^f_{ft} - 1 (q_{ft} + Y^f_{kt}) + b^a_t - 1 + Y^l_{at},
\]

(6)

where \(\theta^a_{ht} \), \(\theta^a_{ft} \), and \(b^a_t \) denote country \(a \)’s purchases of domestic and foreign equity claims and the bond. Unlike in a two-country version of a Lucas (1982) economy, where all output comes in the form of dividends, the presence of labor income risk gives rise to incomplete financial markets.

When looking at different model specifications in our test suite, we impose further restrictions on the general financial market setup just described. In model specification 1, the bond market is shut down, which can formally be achieved by additionally assuming a zero-borrowing limit\(^8\), which together with the market-clearing condition will imply that both investors’ bond positions are always equal to 0. In model specification 2, we assume that there is trade in the one-period risk-free discount bond, \(b^a_t \), but, for simplicity, shut down the domestic equity market.

The goods market clearing condition is:

\[
c_{ht} + c_{ft} = Y_{ht} + Y_{ft}.
\]

(7)

Asset markets clearing conditions are:

\[
\theta^h_{ht} + \theta^f_{ft} = 1,
\]

(8)

\[
\theta^h_{ht} + \theta^f_{ft} = 1,
\]

(9)

\[
b^h_t + b^f_t = 0.
\]

(10)

This completes the description of our general model structure on which the methods comparison is based. An issue that, however, deserves further explanation is our model choice of including an endogenous discount factor (EDF). The discount factor function \(\beta : \mathbb{R}_+ \to [0, 1] \) is non-increasing. As is well-known, if \(\beta(.) \) is a constant function and financial markets are incomplete, then in a local solution that is based on a first-order Taylor series approximation, countries’ net financial positions are non-stationary: the unit root in wealth dynamics implies that the solution allows reaching financial positions that are known to be infeasible. Schmitt-Grohé and Uribe (2003) propose several stationarity-inducing devices to remedy this situation, one of which is the EDF. We follow Devereux and Sutherland (2011, 2010a, 2009) in choosing the precise functional form, given by \(\beta(c) = \beta c^{-\eta} \).

When solving the model with the global method, the endogenous discount factor is not required. To obtain a well defined solution in such case, it suffices to assume the presence of a borrowing constraint. A borrowing constraint can be specified very loosely, e.g. as loose as the natural borrowing constraint, such that the constraints become binding only in rare cases, or it can be specified as a somewhat tighter, ad-hoc constraint. To do a comparison of

\(^8\)Formally, \(b^a_t \geq 0 \) where \(b^a_t \) is country \(a \)'s position in the bond.

\(^9\)Note that strictly speaking, the EDF is an assumption about preferences. However, for our purposes in this paper, we follow the approach in Schmitt-Grohé and Uribe (2003) and interpret the EDF as serving the sole purpose of introducing stationarity to the wealth dynamics of the model.
local and global solution methods, justice, it would not be 'fair' to compare the local solution with a global solution in which a borrowing constraint binds frequently. We compare the local solution to two versions of the global solution method. In the first, for sake of direct comparability, we abstract entirely from a borrowing constraint and introduce the endogenous discount factor also when the model is solved with the global method. This setting allows for the cleanest comparison of local and global solution methods, as we subject the solution methods to an exactly identical model structure. In the second, we also present a version of the global solution that dispenses the EDF and instead specifies an ad-hoc borrowing constraint. We do so because we find that the presence of the EDF can change the properties of the solution. In particular, in asymmetric setups, the presence of the EDF mutes the effects of (differential) precautionary motives that would otherwise lead to asymmetries in the ergodic distribution of net foreign assets, and induces a relatively symmetric distribution. We assume the following form of the borrowing limit:

\[
\theta_{ht} (q_{ht} + Y_{ht}^k) + \theta_{ft} (q_{ft} + Y_{ft}^k) + b_t^h \geq BL, \quad BL \in \mathbb{R}.
\]

In the remainder of the paper (in all figures and tables), we report as 'global' the results from the solution of the global method that employs the EDF, and report as 'global BL' the results from the solution of the global method with borrowing limits.

3 Global and local solution methods

In the following we provide a description of global and local numerical solution methods.

3.1 Global solution method

The equilibrium is characterized by a system of first order and equilibrium conditions, which include the value function definition, first-order optimality conditions with respect to consumption and asset choices (Euler equations), budget constraints and market-clearing conditions. It is summarized in table 1.

The 'natural' state space for our model includes portfolio positions of each country. Following Kubler and Schmedders (2003) and Stepanchuk and Tsyrennikov (2015), we recast the equilibrium conditions in a form that is consistent with a wealth-recursive equilibrium. This allows us to reduce the dimensionality of the problem, as the wealth share, \(\omega_t\), becomes the model’s only endogenous state variable. More precisely, this transformed state variable expresses the domestic country’s financial wealth share in total (world) financial wealth, which, for the case where explicit borrowing constraints are absent, can be written as:

\[
\omega_t = \frac{\theta_{ht} (q_{ht} + Y_{ht}^k) + \theta_{ft} (q_{ft} + Y_{ft}^k) + b_t^h + Y_{ht}^l}{q_{ht} + Y_{ht} + q_{ft} + Y_{ft}}.
\]

\(\omega_t = 0.5\) corresponds to the case where total financial wealth is divided evenly between the two countries. Unlike Kubler and Schmedders (2003) and Stepanchuk and Tsyrennikov (2015),

\[10\]

We use the general model here to describe the solutions methods. In practice, we do a few small changes to the algorithm when we apply it to models specifications 1 and 2: (1) we drop the bond market-clearing conditions and the bond Euler equations in model specification 1; (2) we make the appropriate changes to the equity market-clearing conditions and equity Euler equations in model specification 2.
\[
\begin{align*}
(A1): \quad V_{ht} &= \max_{c_{ht}} \left[\left(1 - \beta (c_{ht}) \right) \frac{1 - \gamma_h}{\tilde{c}_{ht}} + \beta (c_{ht}) \left(E_tV_{ht+1}^{(1-\gamma_h)} \right)^{\frac{1}{\gamma_h}} \right]^{\frac{1}{1-\gamma_h}}, \\
(A2): \quad V_{ft} &= \max_{c_{ft}} \left[\left(1 - \beta (c_{ft}) \right) \frac{1 - \gamma_f}{\tilde{c}_{ft}} + \beta (c_{ft}) \left(E_tV_{ft+1}^{(1-\gamma_f)} \right)^{\frac{1}{\gamma_f}} \right]^{\frac{1}{1-\gamma_f}}, \\
(A3): \quad M_{ht+1} &= \frac{\partial V_{ht}/\partial c_{ht}}{\partial V_{ht}/\partial c_{ht}}, \\
(A4): \quad M_{ft+1} &= \frac{\partial V_{ft}/\partial c_{ft}}{\partial V_{ft}/\partial c_{ft}}, \\
(A5): \quad q_{ht} &= \beta (c_{ht}) E_t M_{ht+1} (q_{ht+1} + Y_{ht+1}^k), \\
(A6): \quad q_{ft} &= \beta (c_{ft}) E_t M_{ht+1} (q_{ft+1} + Y_{ft+1}^k), \\
(A7): \quad q_{ht} &= \beta (c_{ht}) E_t M_{ht+1}, \\
(A8): \quad q_{ft} &= \beta (c_{ft}) E_t M_{ft+1} (q_{ft+1} + Y_{ft+1}^k), \\
(A9): \quad q_{ht} &= \beta (c_{ht}) E_t M_{ht+1} (q_{ft+1} + Y_{ft+1}^k), \\
(A10): \quad q_{ht} &= \beta (c_{ht}) E_t M_{ht+1}, \\
(A11): \quad c_{ht} + c_{ft} &= Y_{ht} + Y_{ft}, \\
(A12): \quad c_{ht} + \theta^h_{ht} q_{ht} + \theta^h_{ft} q_{ft} + b^h q_{ht} = \theta^h_{ht-1} (q_{ht} + Y_{ht}^k) + \theta^h_{ft-1} (q_{ft} + Y_{ft}^k) + b^h_{t-1} + Y_{ht}^l, \\
(A13): \quad \theta^h_{ht} + \theta^h_{ft} &= 1, \\
(A14): \quad \theta^h_{ht} + \theta^h_{ft} &= 1, \\
(A15): \quad b^h_{t-1} + b^h_{t} &= 0.
\end{align*}
\]

Table 1: System of equilibrium conditions.

when we do not impose borrowing limits and short-sale constraints, nothings guarantees that \(\omega_t \in [0, 1] \). However, in practice, in all our simulations \(\omega_t \) remains between 0 and 1 with very high probability. In our numerical algorithm, we choose a grid for \(\omega_t \) to cover the interval of \([-0.5, 1.5]\), and we extrapolate when the realized \(\omega_t \) falls outside of this interval using a quadratic extension of the computed equilibrium policy functions.

When solving the model under the presence of a borrowing constraint, the domestic country’s financial wealth in total (world) financial wealth instead is:

\[
\omega_t = \frac{\theta^h_{ht-1} (q_{ht} + Y_{ht}^k) + \theta^h_{ft-1} (q_{ft} + Y_{ft}^k) + b^h + Y_{ht}^l - BL}{(q_{ht} + Y_{ht} + q_{ft} + Y_{ft} - 2BL)}, \tag{12}
\]

where parameter \(BL \) (‘borrowing limit’) governs the degree to which countries can short-sell their equity, which determine the tightness of the countries’ borrowing limits. The assumption of short-selling constraints is common in the literature of global portfolio solution methods and is generally used to insure that the wealth share can take on only values in the interval \([0, 1]\). In principle, a constraint on the maximum amount of short-selling allowed can be placed on either individual holdings of equity positions (i.e. on \(\theta^h_{ht} \) and \(\theta^h_{ft} \) individually, and on \(\theta^f_{ht} \) and \(\theta^f_{ft} \) individually) or could be placed on the value of the joint equity position (i.e., that \(\theta^h_{ht-1} (q_{ht} + Y_{ht}^k) + \theta^h_{ft-1} (q_{ft} + Y_{ft}^k) + b^h_{t-1} \geq BL \), and similarly for Foreign)\(^{11}\) Since we want to compare the global solution with the local solution (DS method) that ignores such short-selling constraints, we need to insure that our constraints are not too tight.

Using the definition in \((11)\) (respectively, \((12)\)), we can rewrite the budget constraint of

\[^{11}\text{For example, an assumption often made is a no-short-selling constraint on (individual) equity positions, such that } \theta^h_{ht}, \theta^h_{ft}, \theta^h_{ht}, \theta^h_{ft} \geq 0.\]
the home economy in the system of equilibrium conditions as:

\[c_{ht} + \theta^h_{ht}q_{ht} + \theta^f_{ft}q_{ft} + b^h_{ht}q_{ht} = (q_{ht} + Y_{ht} + q_{ft} + Y_{ft})\omega_t. \]

(13)

Let \(Y \) and \(\omega \) denote respectively current, date \(t \), values of the exogenous income states and the wealth share, and \(Y' \) and \(\omega' \) denote their next-period values. In a wealth-recursive equilibrium, equilibrium functions (consumption and portfolio policies, pricing and value functions) depend only on \(Y \) and \(\omega \). Let \(\rho(\omega, Y) \) denote the vector of these equilibrium functions. We approximate these functions by cubic splines. To solve for the spline coefficients, we use a time-iteration collocation algorithm similar to Kubler and Schmedders (2003) and Stepanchuk and Tsyrennikov (2015). We start with some initial guess \(\rho^0 \). During each iteration, we use the spline coefficients of \(\rho^n \) from the previous iteration, and for each \((\omega, Y)\) on some fixed grid, we solve for the prices and optimal consumption and portfolio choices that satisfy the system of equilibrium conditions. In particular, we simultaneously solve two nested systems of non-linear equations. Given the portfolio choice of the home country, \((\theta^h, \theta^f, b^h)\), the next-period wealth share is implicitly defined by:

\[\omega' = \frac{(q_h(\omega', Y') + Y'_h)\theta^h_h + (q_f(\omega', Y') + Y'_f)\theta^h_f + Y'_h}{q_h(\omega', Y') + Y'_h + q_h(\omega', Y') + Y'_f}, \]

(14)

For any \((\theta^h, \theta^f, b^h)\), we can solve equation (14) for all possible realizations of \(Y \) to find a vector of \(\omega'(Y)'s. \) Combined with the spline coefficients of equilibrium policy and pricing functions from the previous iteration, this relates current portfolio choices to the future (next-period) dynamics. With this relationship at hand, we can solve equilibrium system of equations in table 1.

Our algorithm can be summarized as follows:

1. Choose a stopping criterion \(\delta \), a finite grid for \(\omega \) and an initial guess for the equilibrium policy and pricing functions \(\rho^0 \).
2. Given an approximation to the equilibrium policy and pricing functions \(\rho^n \) from the previous iteration, for each value of \((\omega, Y)\) on the predetermined grid we simultaneously solve (14) and the system of equilibrium conditions in table 1.
3. Compute the spline coefficients of the new approximation to the equilibrium functions, \(\rho^{n+1} \).
4. Check if \(||\rho^{n+1} - \rho^n|| < \delta \). If true, terminate the algorithm. If not, increase \(n \) by 1 and continue to step (2).

We choose 81 discretization points for \(Y \), three values for each element of the vector. We discretize the VAR process given in (1) as in Lkhagvasuren and Gospodinov (2014). Finally, we choose 51 discretization points for our endogenous state variable, \(\omega \). A number of recent papers have shown that the widely used discretization approach described in Tauchen and Hussey (1991) can perform rather poorly when the number of discretization nodes is low or when underlying processes are very persistent: (Flodén (2006), Kopecky and Suen (2010)). For this reason we avoid using the Hussey-Tauchen procedure.
3.2 Local solution method

To obtain a local (perturbation) solution, we follow the method of Devereux and Sutherland (2011), henceforth DS. The DS method provides readily applicable solution formulas for the zero-order and first-order parts of an approximation to portfolio holdings, and has, because of its user-friendliness become widely used in recent contributions in macroeconomics. Other noteworthy contributions to solving portfolios with local approximation methods are Samuelson (1970), Judd and Guu (2001), Tille and van Wincoop (2007), and Evans and Hnatkovska (2005).

The DS perturbation solution method is straightforward to implement and in simple settings it is possible to obtain an analytic characterization of the approximate portfolio solution, which can be helpful for building intuition for the mechanisms at play. Its main advantage is that it can be used in rich models, in the presence of several (endogenous) state variables.

We begin by re-stating the budget constraint of the home country as follows:

\[(\theta^h_{ht} - 1)q_{ht} + \theta^h_{ft}q_{ft} + b^h_{bt} = (\theta^h_{ht-1} - 1)(q_{ht} + Y^k_{ht}) + \theta^h_{ft-1}(q_{ft} + Y^k_{ft}) + b_{t-1} + Y_t - c_{ht}. \quad (15)\]

Let \((\alpha^h_{ht}, \alpha^h_{ft}, \alpha^h_{bt}) = ((\theta^h_{ht} - 1)q_{ht}, \theta^h_{ft}q_{ft}, b^h_{bt})\) be net funds invested in home and foreign equity claims by the home country. Net funds invested by the foreign country are: \((\alpha^f_{ht}, \alpha^f_{ft}, \alpha^f_{bt}) = (\theta^f_{ht}q_{ht}, (\theta^f_{ft} - 1)q_{ft}, b^f_{bt})\). The asset market clearing conditions (5) are then replaced by:

\[
\begin{align*}
\alpha^h_{ht} + \alpha^f_{ht} &= 0, \\
\alpha^h_{ft} + \alpha^f_{ft} &= 0, \\
\alpha^h_{bt} + \alpha^f_{bt} &= 0.
\end{align*}
\]

We can write the budget constraint of the home country in terms of \(\alpha\)'s:

\[\alpha^h_{ht} + \alpha^h_{ft} + \alpha^h_{bt} = \alpha^h_{ht-1}r_{ht} + \alpha^h_{ft-1}r_{ft} + \alpha^h_{bt-1}r_{bt} + Y_{ht} - c_{ht},\]

and asset returns:

\[
\begin{align*}
r_{ht} &= \frac{q_{ht} + Y^k_{ht}}{q_{ht-1}}, & r_{ft} &= \frac{q_{ft} + Y^k_{ft}}{q_{ft-1}}, & r_{bt} &= \frac{1}{q_{bt-1}}.
\end{align*}
\]

The net foreign asset (NFA) position of country \(h\) then evolves according to the following law of motion:

\[
W_{ht} \equiv \alpha^h_{ht} + \alpha^h_{ft} + \alpha^h_{bt} = r_{bt}W_{ht-1} + \alpha^h_{ht-1}(r_{ht} - r_{bt}) + \alpha^h_{ft-1}(r_{ft} - r_{bt}) + Y_{ht} - c_{ht}. \quad (16)
\]
The NFA position of the foreign country is $W_{ft} = -W_{ht}$. The solutions – the country’s policy functions and the price system – are functions of W_{ht} and exogenous shocks Y. This is equivalent to using the home country’s wealth share, ω_t.

Generally, applying a perturbation method to a model where agents face a portfolio choice is non-trivial. The reason is that the approximation point is typically chosen to be the solution to a deterministic version of a model. But in a deterministic setting all assets must yield the same return and thus are perfect substitutes. As a consequence, there is a continuum of solutions to a deterministic version as first emphasized in [Judd and Guu (2001)]. A related but distinct difficulty is that, because of certainty equivalence, the portfolio is also indeterminate in a first-order approximation to the model. DS show how to overcome these problems: they solve for the zero-order component of the portfolio solution by combining a first-order approximation to the ‘macroeconomic part’ of the model with a second-order approximation to the ‘portfolio part’, Euler equations A1-A4. A second-order approximation to Euler equations and a first-order approximation to the macroeconomic part are in general interdependent. But DS show that this simultaneous system can be used to obtain an analytical solution for the steady-state portfolios, denoted $\alpha(\bar{x})$ in equation (17) below. Similarly, to solve for the first-order portfolio dynamics, $\alpha_x(\bar{x})$, one should combine a second-order approximation to the ‘macroeconomic part’ with a third-order approximation to Euler equations. One can then write the approximate portfolio solution as:

$$\alpha_t \simeq \alpha(\bar{x}) + \alpha_x(\bar{x})\hat{x}_t,$$

where \hat{x}_t denotes the vector of state variables, in terms of percentage deviations from steady state (apart from NFA which is in terms of absolute deviations), while \bar{x} refers to (deterministic) steady state values of that vector. DS also state that their solution principle, which builds up on earlier work by [Samuelson (1970)], could be successively applied to higher orders: to obtain an n-th order accurate portfolio solution, one needs to approximate the portfolio optimality conditions up to order $n + 2$, in conjunction with an approximation to the model’s other optimality and equilibrium conditions of order $n + 1$. E.g., going one order higher, one would obtain the approximate portfolio solution as $\alpha_t = \bar{\alpha} + \alpha_x\hat{x}_t + \frac{1}{2}\hat{x}_t\alpha_{xx}\hat{x}_t$.

As argued in [Rabitsch and Stepanchuk (2014)] who analyze a two-period version of our model, the DS method does not take into account the potential effect of the size of shocks on the portfolio solution. We study the consequences of this for our dynamic model in the online appendix. For the range of the sizes of the shocks typically used in the dynamic macroeconomic models, we find the impact of this omission to be small.

We now briefly mention another problem that is not explicitly addressed in the description of the DS solution method. It arises because, in general, in incomplete market open economy models the deterministic steady-state NFA positions cannot be determined uniquely, which is of particular relevance in asymmetric country settings where the stationary distribution of net foreign assets is likely not to be centered around zero. While introducing a stationarity inducing-device such as an endogenous discount factor (as we have in our test model) allows obtaining a unique \bar{W}_h at the deterministic steady state, this obtained value may be very different from its stochastic or risky steady state value. In section 4.2.2 we explore alternatives to the (exogenously) pinned down deterministic steady state value of \bar{W}_h as possible better approximation points, and evaluate the performance of the DS method in these cases.

\footnote{Because W_{ht} can be expressed as a function of ω_t.}
Finally, we would like to emphasize another technical difficulty with the perturbation method. It arises when simulations are generated using second or higher order approximation to the model equilibrium system. In this case the dynamics of control variables are affected by higher than second order terms. These in turn feed into dynamics of the state. This can lead to explosive system dynamics because, as emphasized by Kim et al. (2003), these extra high-order terms in general do not correspond to high-order coefficients in a Taylor series approximation. A ‘stable simulation’ can be obtained by ‘pruning’ out extraneous high-order terms in each iteration by computing projections of second-order terms based on a first-order approximation. Our simulations obtained using the perturbation solution use ‘pruning’. See Kim et al. (2003), Den Haan and de Wind (2009), Lombardo (2010), and Lan and Meyer-Gohde (2013) for a discussion of advantages and disadvantages of ‘pruning’.

4 Model specification 1: two equities

We start our comparison of the two solution methods by looking at a scenario in which the bond market of the model framework presented in section 2 is shut down by a zero-borrowing limit in the bond for both countries, i.e., \(b^a_t \geq 0 \), for \(a = h, f \). In this case, our model framework becomes equivalent to the workhorse model of Devereux and Sutherland (2011). The budget constraint of the representative agent in country \(a \) becomes:

\[
c_{at} + \theta^a_{ht} q_{ht} + \theta^a_{ft} q_{ft} = \theta^a_{ht-1} (q_{ht} + Y^k_{ht}) + \theta^a_{ft-1} (q_{ft} + Y^k_{ft}) + Y^l_{at}.
\]

(18)

We first (section 4.1) consider a setting where the two countries of our model economy are parameterized in an entirely symmetric way. This facilitates the comparison because in this case a net foreign asset position of zero (\(W^h = 0 \)) is the ‘natural’ approximation point for the local method. This is equivalent to both countries holding equal wealth shares: \(\bar{\omega} = 0.5 \). Such setting can be thought of as a relevant description of financial trade between similar countries or country groups, e.g. financial trade between advanced economies. Section 4.2 repeats the analysis for an asymmetric setup. The particular asymmetry we consider here is that we subject the foreign country to twice as volatile income endowment shocks. This captures one particular dimension in which emerging market economies are different from advanced economies – they are subject to substantially higher macroeconomic volatility at business cycle frequencies, see e.g. Aguiar and Gopinath (2007). The asymmetric setup of model specification 1 is also relevant from a numerical point of view. In particular, it allows us to clarify how the performance of the local (DS) solution is affected by the choice of the approximation point, which we discuss in section 4.2.2.

We compare global and DS solution methods by contrasting policy functions, model moments of simulated time series over both short and long horizons, and welfare measures.

4.1 Symmetric setting

The parameter values for the setup with symmetric countries are reported in table 2. They fall into the range of values that are commonly used in macroeconomics. In particular, the discount factor \(\beta \) of 0.95 implies an annual interest rate of about 5%. We set the inverse

\[\]
Table 2: Parameters for the symmetric setup, model specification 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor</td>
<td>β</td>
</tr>
<tr>
<td>Endogenous discount factor</td>
<td>η</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>$\gamma_h, \gamma_f, 1/\psi_h, 1/\psi_f$</td>
</tr>
<tr>
<td>Capital income share</td>
<td>$Y_h^k/Y_h, Y_f^k/Y_f$</td>
</tr>
<tr>
<td>Annual mean output</td>
<td>\bar{Y}_h, \bar{Y}_f</td>
</tr>
<tr>
<td>Persistence</td>
<td>$\rho_{Y_h^k}, \rho_{Y_f^k}, \rho_{Y_h^l}, \rho_{Y_f^l}$</td>
</tr>
<tr>
<td>Volatility</td>
<td>$\sigma_{Y_h^k}, \sigma_{Y_f^k}, \sigma_{Y_h^l}, \sigma_{Y_f^l}$</td>
</tr>
<tr>
<td>Correlation</td>
<td>$\text{cor}(Y_h^k, Y_h^l) = \text{cor}(Y_f^k, Y_f^l)$</td>
</tr>
<tr>
<td>borrowing constraint</td>
<td>BL</td>
</tr>
</tbody>
</table>

The elasticity of intertemporal substitution equal to the coefficient of relative risk aversion, i.e. $\gamma_a = 1/\psi_a$ for $a = h,f$, which implies CRRA preferences. The coefficients of relative risk aversion, γ_h and γ_f, are set to 2, a commonly chosen value. The means of the total endowment incomes are normalized to 1, of which capital income accounts for 30%. The persistences of the income endowment processes, $\rho_{Y_a^k}, \rho_{Y_a^l}$, for $a = h,f$, are set to 0.8, their volatilities, $\sigma_{Y_a^k}, \sigma_{Y_a^l}$, for $a = h,f$, to 0.02. These choices imply a standard deviation of aggregate log-output of $\sigma (\log Y_h) = \sigma (\log Y_f) = 0.0163$, roughly in line with the values from an estimated AR(1) process of postwar US annual output. We assume a positive correlation between countries’ labor and capital income, equal to 0.2. The moments of the output processes, Y_t, that we use in all the numerical results that follow, are the ‘targets’ that we use to create discrete approximations to continuous VAR processes. Because discrete approximations are not exact, we use numerically computed moments as inputs to the DS method. This avoids differences across the two methods to arise from the discretization of the exogenous processes. Finally, we treat the endogenous discount factor as a purely technical device that induces stationarity and throughout the paper set $\eta = 10^{-3}$, a ‘small’ value. For solving the model with the global method plus borrowing constraint, we set $BL = 0$ (and $\eta = 0$). For our choice of specification of a ‘joint constraint’ and parameter $BL = 0$, the constraints become binding less than half a percent of the times in a stochastic simulation, and allows the NFA position to reach about the sixfold of annual steady state output.

The left column (panels A,D, and G) in figure 1 presents policy functions for the home country’s consumption share, portfolio shares and asset prices for the global solution method. We plot policies as a function of the home country’s NFA and conditional on $Y = E[Y]$. The solution is highly accurate as evidenced by the Euler equation errors presented in figure 10 in appendix A. Because of its high accuracy we refer to the global solution as to the true solution of the model. The middle column (panels B, E, H) repeats the policy functions for the global solution method with borrowing limits.
The differences between the perturbation and global methods’ policy functions are plotted in the right column (panels C,F, and I). First, local and global solutions predict slightly different consumption shares for country h when country h’s NFA is far from 0. The relative difference can be as large as 0.005. But the levels of NFA where the difference is large are unlikely. The shape of asset price policies is influenced a lot by the presence of the EDF. In the global solution without EDF (but with borrowing limits) asset prices increase when one of the countries becomes significantly richer than the other. The discrepancy in asset prices between local and global solution with EDF is negligible.
We next turn to contrast results from global and DS solutions based on simulated model data. Here we consider simulations over both short and long horizons, to be able to evaluate the methods’ performance both at short horizons and in terms of ergodic model properties. Figure 2 compares time paths generated using the perturbation and global solution methods, obtained from one particular realization of exogenous variables for 100 periods. Simulations for the perturbation solution are based on a second-order approximation and were ‘pruned’. Except for portfolio holdings, the two solution methods with EDF generate similar simulation paths: the maximum difference for the NFA, consumption share, and the asset prices are respectively 0.36%, 0.002%, and 0.0003%. The maximum difference between the simulated
series of portfolio holdings is 2.67\%. The 'portfolio errors' are virtually perfectly negatively correlated: $\rho(\theta^h_{DS} - \theta^h_{glob}, \theta^f_{DS} - \theta^f_{glob}) = -1$. So, despite a large discrepancy in simulated portfolios the two NFA paths are close.

Next we compare first- and second-order moments obtained using the two solution methods. Table 3 reports moments from both a ‘panel simulation’ (first subtable) and from a long simulation (second subtable, labeled ‘ergodic moments’). By ‘panel simulation’ we refer to a simulation of 10000 series of 100 periods, starting at $W_{h0} = 0$, each. The long simulation instead is a single series of 100 million periods. Because the NFA position is highly persistent, moments obtained from a panel of short simulations and ergodic moments are generally different. Looking at the moments from panel simulations, the local and global solution methods generate identical means and standard deviations. Yet, the solutions differ in their predictions for correlations of portfolios with H’s and F’s output. While the perturbation solution predicts the correlation signs correctly, it underestimates the strength of the relation. For example, it predicts that country h’s ownership of asset H is nearly uncorrelated with output in the two countries. The global solution method implies a relation of mild strength: $\rho(\theta^h_h, Y^h) = -0.194$, $\rho(\theta^f_f, Y^h) = 0.153$. Correlations implied by the perturbation solution are smaller because perturbation solution method imposes that ‘to a first-order approximation, the portfolio excess returns are zero-mean i.i.d. random variables.’

Looking at ergodic moments, the local solution gives almost identical results as the global when compared to the version that incorporates the EDF (column ‘global’). The ergodic moments from the global solution with borrowing limits (column ‘global BL’) show the same ergodic means, but a much larger standard deviation, especially for the NFA position. This is visualized in figure 3 which plots the ergodic distribution of NFA for three cases of table 3 (Note that the stationary distributions of ‘local’ and ‘global’ virtually coincide.)

Finally, we also compute welfare differences across the two methods: $\Delta (%)$ measures the percent difference in certainty equivalent consumption of the local method compared to the global method, conditional on $Y = E[Y]$ and $W_{h0} = 0$.

To summarize, in a symmetric setting parameterized to match output processes of developed economies the perturbation method performs well. In particular, it matches closely the evolution of macroeconomic variables and of the NFA position. It produces somewhat inaccurate predictions about cyclical properties of countries’ portfolios. These findings are also robust with respect to increasing shock volatility, increasing shock persistence or higher risk aversion.

\footnote{For details see page 1329 in Devereux and Sutherland (2010a).}

\footnote{In particular, our welfare measure is defined as $\Delta (%) = (\text{welfare}_{a, DS}(\text{CE}) - \text{welfare}_{a, glob}(\text{CE})) / \text{welfare}_{a, glob}(\text{CE}) \times 100$, where $a = h, f$.}

\footnote{Despite the higher variance of net foreign assets in the case of ‘global BL’ compared to ‘global’ the welfare differences under these scenarios with respect to ‘local’ are close. We explain this as the realizations of the time paths of consumptions of ‘global BL’ and ‘global’ that are relevant for the welfare measures are similar, and consumption time paths become different only at large t, in which case they are heavily discounted.}
Moments from panel simulations

<table>
<thead>
<tr>
<th></th>
<th>global</th>
<th>global BL</th>
<th>local</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu(\cdot)$</td>
<td>$\sigma(\cdot)$</td>
<td>$\rho(\cdot, Y^h)$</td>
</tr>
<tr>
<td>NFA^h</td>
<td>0.001</td>
<td>0.081</td>
<td>-0.119</td>
</tr>
<tr>
<td>c_h</td>
<td>0.500</td>
<td>0.002</td>
<td>0.251</td>
</tr>
<tr>
<td>θ^h</td>
<td>0.267</td>
<td>0.007</td>
<td>-0.194</td>
</tr>
<tr>
<td>θ_f</td>
<td>0.733</td>
<td>0.007</td>
<td>0.153</td>
</tr>
<tr>
<td>q_h</td>
<td>5.703</td>
<td>0.111</td>
<td>0.737</td>
</tr>
<tr>
<td>q_f</td>
<td>5.703</td>
<td>0.111</td>
<td>0.648</td>
</tr>
<tr>
<td>r_h</td>
<td>1.053</td>
<td>0.014</td>
<td>0.243</td>
</tr>
<tr>
<td>r_f</td>
<td>1.053</td>
<td>0.014</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Ergodic moments

<table>
<thead>
<tr>
<th></th>
<th>global</th>
<th>global BL</th>
<th>local</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu(\cdot)$</td>
<td>$\sigma(\cdot)$</td>
<td>$\mu(\cdot)$</td>
</tr>
<tr>
<td>NFA^h</td>
<td>-0.004</td>
<td>0.722</td>
<td>-0.006</td>
</tr>
<tr>
<td>c_h</td>
<td>0.500</td>
<td>0.019</td>
<td>0.500</td>
</tr>
<tr>
<td>θ^h</td>
<td>0.267</td>
<td>0.063</td>
<td>0.267</td>
</tr>
<tr>
<td>θ_f</td>
<td>0.733</td>
<td>0.063</td>
<td>0.732</td>
</tr>
<tr>
<td>q_h</td>
<td>5.703</td>
<td>0.118</td>
<td>5.704</td>
</tr>
<tr>
<td>q_f</td>
<td>5.703</td>
<td>0.118</td>
<td>5.704</td>
</tr>
<tr>
<td>r_h</td>
<td>1.053</td>
<td>0.014</td>
<td>1.053</td>
</tr>
<tr>
<td>r_f</td>
<td>1.053</td>
<td>0.014</td>
<td>1.053</td>
</tr>
</tbody>
</table>

Table 3: Comparison of model moments, symmetric setting of model specification 1.

Columns 'global' and 'local' refer, respectively, to the global and DS solutions when the endogenous discount factor is present. Column 'global BL' refers to the global solution when a borrowing limit is present.

Figure 3: Ergodic distribution of NFA holdings in the symmetric setting, model specification 1.

Labels 'global' and 'local' refer, respectively, to the global and DS solutions when the endogenous discount factor is present. Label 'global BL' refers to the global solution when a borrowing limit is present.

4.2 Asymmetric setting

In this section we study a setting in which country f faces income shocks with higher volatility, serving as a stylized example of financial trade between advanced economies and emerging market economies. In particular, we assume $\sigma_{Y^i} = 2\sigma_{Y^i}$, with $\sigma_{Y^i} = 0.02$, for $i = k, l$.

17
The implied standard deviations of aggregate log-outputs in this case are \(\sigma (\log Y_h) = 0.0163 \) and \(\sigma (\log Y_f) = 0.0324 \). Because markets are incomplete, precautionary motives are active. Since shocks that country \(f \) faces are more volatile, its precautionary demand is higher. So, we expect country \(f \) (country \(h \)) to accumulate more (less) wealth on average, and thus expect the stationary distribution of NFA to be no longer centered around zero, but around a negative value. This setting is interesting from a methodological point of view, because the perturbation solution method, being a local method, requires a 'point' around which the approximation is taken, often chosen to be the deterministic steady state of the economic model. However, in the deterministic version of the model the two countries remain symmetric – asymmetries in our example were only specified in shock volatilities; in the limit where those shock volatilities go to zero, the two economies become symmetric again. This instructs us to continue to approximate the model around a NFA position of \(W_h = 0 \). This case presents us with a realistic setting where we can expect the perturbation solution quality to deteriorate as the simulated NFA position deviates from this approximation point. At the same time the solution accuracy of the global solution method should not be compromised. This is indeed true as measured by the errors in the equilibrium conditions plotted in figure [11] in appendix A.

Figure 4 plots simulated series for the setting with diverse output volatility. Results are qualitatively similar to those for the symmetric setting (see figure 2). Consumption, asset prices and NFA are approximated well. But portfolio dynamics differ across the two solution methods. The maximal error for the NFA is 1.20\% of country \(h \)’s output, for the consumption share and asset prices it is 0.011 and 0.0015\% respectively. The maximal error for portfolios is, with 6.20\%, more substantial. The first part of table 4 shows moments from ‘panel simulations’, computed from 10000 randomly generated samples of length 100, each starting at \(W_{h0} = 0 \). The perturbation solution method produces almost identical results for means and standard deviations as the global solutions; it predicts cyclical properties of the portfolio slightly incorrectly. For example, \(\rho (\theta^h_f, Y_f) = 0.223 \) in the perturbation solution while it is 0.353 in the global solution (0.349 in the global solution with borrowing limits). Another result becomes apparent from the subtable on ‘panel simulations’: for moments of short time series, the model versions with EDF (column ‘global’) or without EDF but borrowing limits (column ‘global BL’) deliver equivalent results. Overall, the local (DS) solution performs well at short horizons, despite the potential difficulties stemming from approximating at the (symmetric) deterministic steady state.

The second subtable of table 4 summarizes the findings on ergodic moments in the asymmetric country scenario. The perturbation method produces ergodic moments that are very close to the global method, when both methods are applied to the model with an EDF (columns ‘global’ and ‘local’), yet it produces markedly different moments when compared to the global solution method without EDF but borrowing limits instead (‘global BL’). From this we learn two lessons. One, the EDF has a very strong impact on the ergodic properties of the model, influencing not only the volatilities of variables in a stochastic simulation (as

\(^{23}\)This, in fact, is the deterministic steady state value of the NFA implied by the presence of our assumption of an endogenous discount factor, which insures this deterministic steady state is also well defined.

\(^{24}\)De Groot et al. (2014) also compare global and local solution methods of incomplete market general equilibrium models, but without portfolio choice. They compare a model with borrowing constraints (solved globally) and a model with a debt-elastic interest rate (solved locally). Because their interest lies mainly in the ergodic moments they find significant differences between the global and local solution method. This mirrors our results on ergodic model properties.
Figure 4: Simulated time paths for country h in the asymmetric setting with $\sigma_{Y_f} = 2\sigma_{Y_h}$, for $i = k, l$, model specification 1.

Labels ‘global’ and ‘local’ refer, respectively, to the global and DS solutions when the endogenous discount factor is present. Label ‘global BL’ refers to the global solution when a borrowing limit is present.
Moments from panel simulations

<table>
<thead>
<tr>
<th></th>
<th>global</th>
<th>global BL</th>
<th>local</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFA^h</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.004</td>
</tr>
<tr>
<td>c^h</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>θ_h^b</td>
<td>0.267</td>
<td>0.267</td>
<td>0.267</td>
</tr>
<tr>
<td>q^h</td>
<td>5.708</td>
<td>5.709</td>
<td>5.709</td>
</tr>
<tr>
<td>r^h</td>
<td>1.053</td>
<td>1.053</td>
<td>1.053</td>
</tr>
<tr>
<td>NFA^f</td>
<td>-1.661</td>
<td>-1.792</td>
<td>-1.792</td>
</tr>
<tr>
<td>c_f</td>
<td>0.495</td>
<td>0.495</td>
<td>0.495</td>
</tr>
<tr>
<td>θ_f^b</td>
<td>0.248</td>
<td>0.074</td>
<td>0.247</td>
</tr>
<tr>
<td>q_f</td>
<td>5.709</td>
<td>5.709</td>
<td>5.709</td>
</tr>
<tr>
<td>r_f</td>
<td>1.053</td>
<td>1.053</td>
<td>1.053</td>
</tr>
</tbody>
</table>

Ergodic moments

<table>
<thead>
<tr>
<th></th>
<th>global</th>
<th>global BL</th>
<th>local</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFA^h</td>
<td>-0.168</td>
<td>-1.661</td>
<td>-1.792</td>
</tr>
<tr>
<td>c^h</td>
<td>0.495</td>
<td>0.456</td>
<td>0.495</td>
</tr>
<tr>
<td>θ_h^b</td>
<td>0.248</td>
<td>0.074</td>
<td>0.247</td>
</tr>
<tr>
<td>q^h</td>
<td>5.709</td>
<td>5.709</td>
<td>5.709</td>
</tr>
<tr>
<td>r^h</td>
<td>1.053</td>
<td>1.053</td>
<td>1.053</td>
</tr>
<tr>
<td>NFA^f</td>
<td>-1.661</td>
<td>-1.792</td>
<td>-1.792</td>
</tr>
<tr>
<td>c_f</td>
<td>0.495</td>
<td>0.456</td>
<td>0.495</td>
</tr>
<tr>
<td>θ_f^b</td>
<td>0.248</td>
<td>0.074</td>
<td>0.247</td>
</tr>
<tr>
<td>q_f</td>
<td>5.709</td>
<td>5.709</td>
<td>5.709</td>
</tr>
<tr>
<td>r_f</td>
<td>1.053</td>
<td>1.053</td>
<td>1.053</td>
</tr>
</tbody>
</table>

Table 4: Comparison of model moments in the asymmetric setting with $\sigma_f = 2\sigma^h_h$, model specification 1.

Columns ‘global’ and ‘local’ refer, respectively, to the global and DS solutions when the endogenous discount factor is present. Column ‘global BL’ refers to the global solution when a borrowing limit is present.

Welfare differences are somewhat larger than in the symmetric country setup. Welfare, $\Delta (%)$, is found to be 0.0237% and 0.0556% higher under the local method compared to ‘global’, when considering certainty equivalent consumption of the home agent or the foreign agent respectively; and it is 0.0240% and 0.0560% higher than under ‘global BL’.

To summarize, the DS perturbation solution in an asymmetric country setting of model 1 remains accurate along short time paths and moments from ‘panel simulations’. When characterizing ergodic moments, the DS method faces a technical difficulty that comes from the (need to) use of stationarity-inducing devices. When the forces of the EDF are strong, the asymmetries coming from structural differences in the two economies are largely downplayed.

Footnote: For the interested reader, we provide a discussion of the role of the EDF in shaping ergodic distributions as part of the online appendix.
Since the ergodic distributions remain surprisingly symmetric in our baseline parameterization the global and local (with EDF parameter $\eta = 10^{-3}$) issues of taking the local approximation around the ‘right’ approximation point are of minor importance. The focus of the next section is to evaluate the generality of this finding, and to present a sensitivity analysis of the asymmetric country setting.

4.2.1 Sensitivity analysis in the asymmetric setting

The particular sensitivity experiment we present is that of increasing the volatilities of country h and f to $\sigma_{Y^h} = 0.03$ and $\sigma_{Y^f} = 0.06$, and of modifying our parameter of risk aversion from the benchmark value of 2 to a substantially higher value of 15.26

Table 5 summarizes simulated model moments, from both ‘panel simulations’ and ergodic moments. The model moments from ‘panel simulations’ document that at short horizons, even for this more extreme parameterization, the local method continues to capture the behavior of variables accurately. We thus focus on ergodic model properties. Here, larger differences between the two solutions emerge. As risk-aversion increases, precautionary demands of both countries increase. But country f, facing more volatile shocks, increases its demand more. The economic forces of asymmetries are now magnified (and work more strongly against the symmetry-inducing influence of the EDF parameter $\eta = 10^{-3}$), leading to a) strong asymmetries in ergodic distributions of our model variables, and to b) much more substantial differences in local and global solution methods – potentially because the ‘point of approximation’ of the deterministic steady state is a less suitable description of the stochastic economy. This is reflected also in figure 6, which repeats the figure on ergodic distributions of NFA holdings for our sensitivity experiment.27

Note that the implied standard deviation of aggregate log-output is more moderate, i.e. $\sigma (\log Y^h) = 0.0244$ and $\sigma (\log Y^f) = 0.0486$. Also, because of Epstein-Zin preferences the elasticity of intertemporal substitution remains at its reasonable value of 1/2.

27In the online appendix, we also report the effect of variations in η on the ergodic distribution for this case.
Moments from panel simulations

<table>
<thead>
<tr>
<th></th>
<th>(\mu(.))</th>
<th>(\sigma(.))</th>
<th>(\rho(.,Y^h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NFA^h)</td>
<td>-0.111</td>
<td>0.198</td>
<td>-0.065</td>
</tr>
<tr>
<td>(c_h)</td>
<td>0.498</td>
<td>0.006</td>
<td>0.156</td>
</tr>
<tr>
<td>(\theta_h^h)</td>
<td>0.259</td>
<td>0.032</td>
<td>-0.210</td>
</tr>
<tr>
<td>(\theta_f^h)</td>
<td>0.724</td>
<td>0.024</td>
<td>0.251</td>
</tr>
<tr>
<td>(q_h)</td>
<td>5.757</td>
<td>0.255</td>
<td>0.481</td>
</tr>
<tr>
<td>(q_f)</td>
<td>5.747</td>
<td>0.277</td>
<td>0.389</td>
</tr>
<tr>
<td>(r_h)</td>
<td>1.053</td>
<td>0.031</td>
<td>0.162</td>
</tr>
<tr>
<td>(r_f)</td>
<td>1.053</td>
<td>0.034</td>
<td>0.110</td>
</tr>
</tbody>
</table>

Ergodic moments

<table>
<thead>
<tr>
<th></th>
<th>(\mu(.))</th>
<th>(\sigma(.))</th>
<th>(\rho(.,Y^h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NFA^h)</td>
<td>-2.526</td>
<td>1.286</td>
<td>-0.143</td>
</tr>
<tr>
<td>(c_h)</td>
<td>0.434</td>
<td>0.034</td>
<td>0.156</td>
</tr>
<tr>
<td>(\theta_h^h)</td>
<td>-0.023</td>
<td>0.150</td>
<td>-0.232</td>
</tr>
<tr>
<td>(\theta_f^h)</td>
<td>0.585</td>
<td>0.076</td>
<td>0.474</td>
</tr>
<tr>
<td>(q_h)</td>
<td>5.755</td>
<td>0.270</td>
<td>0.760</td>
</tr>
<tr>
<td>(q_f)</td>
<td>5.743</td>
<td>0.293</td>
<td>0.749</td>
</tr>
<tr>
<td>(r_h)</td>
<td>1.053</td>
<td>0.030</td>
<td>1.053</td>
</tr>
<tr>
<td>(r_f)</td>
<td>1.055</td>
<td>0.034</td>
<td>1.055</td>
</tr>
</tbody>
</table>

Table 5: Comparison of model moments in the asymmetric setting with \(\sigma_{Y^i} = 2\sigma_{Y^h} \), for \(i = k, l \), model specification 1, sensitivity analysis with \(\sigma_{Y^k} = \sigma_{Y^h} = 0.03 \) and risk aversion coefficient of 15.

Columns ’global’ and ’local’ refer, respectively, to the global and DS solutions when the endogenous discount factor is present. Column ’global BL’ refers to the global solution when a borrowing limit is present.

Our sensitivity experiment provides us with a setting in which, for ergodic properties, the local method has become inaccurate. These inaccuracies could stem from a) the point of approximation being inappropriate, or from b) the policy functions being non-linear and inaccurate away from the point of approximation. Our findings help us uncover the potential source of these inaccuracies. Our results on ‘panel simulations’ versus our results on ergodic moments seem to suggest that b) is of relevance. In particular, we find that the panel simulation results of local and global method are typically very close to each other, in contrast to results on ergodic model properties. This indicates that differences may emerge when the NFA position is allowed to travel far away from the approximation point, as it happens in a really long simulated series only.

4.2.2 The role of the approximation point

In this section we evaluate the performance of the local DS method depending on what approximation point is used. Typically, the convention in dynamic macroeconomics is to take a local approximation around the deterministic steady state, with an understanding that most of the model dynamics are likely to be close to this rest point, so that the approximation would

On the other hand, we argue that such dissection into ‘reasons for inaccuracy’ a) and b) is not entirely possible, as they are interrelated. In particular, if policy functions were, in fact, truly linear, then a ‘wrong’ approximation point should be entirely inconsequential, and should not be a cause of differences in time paths even if the NFA drifts far away from the approximation point.
Figure 6: Ergodic distribution of NFA holdings in the asymmetric setting with $\sigma_{Y_i} = 2\sigma_{Y_i}$, for $i = k, l$, model specification 1, sensitivity analysis with $\sigma_{Y_k} = \sigma_{Y_l} = 0.03$ and risk aversion coefficient of 15.

Labels 'global' and 'local' refer, respectively, to the global and DS solutions when the endogenous discount factor is present. Label 'global BL' refers to the global solution when a borrowing limit is present.

be a 'good' description of the true nonlinear dynamics in the neighborhood of this point.

There, however, exists a recent literature that argues that the deterministic steady state may not always be the 'ideal' approximation point and that for certain applications the point of approximation matters strongly for local (perturbation) solutions (see, e.g., Julliard (2011), Coeurdacier et al. (2011, 2013), Gertler et al. (2011), and De Groot (2013)). In some cases, the deterministic steady state values of the macroeconomic variables – defined as the equilibrium time-invariant values in a world of certainty – may be very different from (the mean of) the steady state (ergodic) distribution of those variables in a stochastic world. This is true, e.g., in the presence of heterogeneous agents (countries), particularly if agents are asymmetric. Moreover, in some cases the deterministic steady state is not properly defined, for example in a small open economy or in a two country incomplete markets model where equilibrium wealth is not uniquely defined, or in portfolio choice problems for which portfolios are indeterminate in the deterministic steady state. In such cases, Coeurdacier et al. (2011) propose to approximate the model around the so called 'risky steady state', which incorporates information about the stochastic nature of the economic environment, and which is defined to be the 'point where agents choose to stay at a given date if they expect future risk and if the realization of shocks is 0 at this point'.

So far, the model simulations of sections 4.1 and 4.2 have followed the convention to use the deterministic steady state as the approximation point in deriving the DS solution, which because of the presence of the EDF is well defined and implies $W_h = 0$ even in the asymmetric setting. Because the mean of the stochastic steady state distribution of NFA is generally different from zero in asymmetric settings, we investigate if the performance of the

29 As outlined in section 2, the DS algorithm manages to overcome the problem that steady state portfolios are indeterminate at the non-stochastic steady state. Nevertheless, the problem that the equilibrium wealth position (the net foreign asset position) is not pinned down uniquely, remains.

30 This is also typically the route followed in most of the literature that has used the DS solution method (see references in footnote 2).
DS method can be improved by using alternative approximation points.

As such possible alternative of the NFA, we choose the 'stochastic steady state' value of the NFA implied by the second order approximate policy functions from an iterative procedure described in [Devereux and Sutherland (2009)]. This heuristic method is similar in spirit to the concept of the risky steady state literature, in that the approximation point is found from the relative risk profiles of the two countries. Yet, it is different in that variables other than the NFA position remain at their deterministic steady state values. Unfortunately, the concept of the risky steady state is not directly applicable to the DS method, as the DS solution formulas assume that the assets’ rates of return are identical at the point of approximation – which holds at the deterministic steady state, but not generally in a stochastic equilibrium.\footnote{See the online appendix for a more elaborated discussion of this point.}

We also consider the mean of the stochastic steady state distribution obtained under the global solution method ('global') as another candidate.

Despite their intuitive appeal, our attempts at improving the performance of the DS method by searching for a more appropriate approximation point turn out unsuccessful. Please refer to the online appendix for a more extensive discussion.

5 Model specification 2: a bond and an equity claim

In model 2 we evaluate our portfolio solution methods in a specification of the general model framework of section 2 that adds further asymmetries relevant to understanding some of the key stylized facts of the international financial landscape. In particular, the asymmetry looked at in section 4.2 is not enough to provide a realistic description of financial trade between advanced versus emerging market economies. These countries are typically asymmetric in the risk they face, not only because emerging economies face higher macroeconomic volatility at business cycle frequencies, but also because their financial systems are less developed, which allows them to diversify away less of the idiosyncratic risks (see, e.g., Mendoza et al. (2009a), Caballero et al. (2006), Gourinchas et al. (2010), and Maggiore (2013)). These asymmetries may be at the heart of the very asymmetric portfolio (and net foreign asset) positions observed in the data: as argued by Gourinchas and Rey (2007b, 2013), the structure and composition of portfolios of advanced economies – above all the US – shows, in contrast to emerging economies, a larger fraction of risky assets (portfolio equity or FDI) in their external balance sheets, which allows them to earn an on-average premium, or excess return, on their net position. In particular, Gourinchas et al. (2010) argue that to match this asymmetry in the structure of portfolios and to address possible expected valuation effects stemming from a systematic return differential, the modeling of different attitudes towards risk across those countries (as a short cut for a different ability to diversify domestic risk) may be essential. Model specification 2 aims to put some of these key ‘finance’ stylized facts at center stage. Standard macroeconomic models with CRRA preferences perform poorly in matching asset-pricing facts such as the observed equity premium. Explaining asset-pricing facts not only makes models more realistic but also increases the cost-of-business-cycles estimates and justifies policy intervention.\footnote{Tallarini (2000) and Ellison and Sargent (2012) show that in the model that matches observed risk premium business cycle fluctuations are much costlier than in Lucas (1987).} It is even more important to be consistent with these facts in international macroeconomic models with portfolio choice. In the latter, asset prices determine relative wealth positions and, therefore, real allocations, and are thus important
ingredients to understanding the composition of international capital flows.

Compared to model specification 1, we make two major changes in the model of this section. First, we change the menu of traded assets. We allow unrestricted trade in a one-period risk-free discount bond. At the same time, we assume that the equity claim of only one of the two countries is traded in the market, assumed to be the equity of the foreign economy. The budget constraint of the representative agent in country \(a \) becomes:

\[
c_{at} + \theta_a^t q_{ft} + b_a^t q_{bt} = Y_{ht} + \theta_{ft-1}^t (q_{ft} + Y_{ft}) + b_{t-1}^a + Y_{at},
\]

(19)

While the introduction of the bond trade allows us to introduce a sharp distinction between a risky and a safe asset, the restriction on the equity trade is made for convenience only, to simplify the numerical problem for both the DS and the global solution methods\(^{33}\). We parameterize the model such that the risky asset earns a substantial excess return comparable in magnitude to those observed in the data (‘equity premium’). Second, we allow countries to differ in their tastes towards risk, i.e. in the degrees of risk aversion. Because the investors of the two countries are heterogeneous in their tastes towards the ‘higher risk’ – ‘higher returns’ tradeoff, this naturally separates countries into equity and bond investors, as observed in the data.

In addition to being able to better match some of the key asset-pricing empirical regularities, model specification 2 allows us to test how the DS method performs in a setting where one could expect it not to perform well. Under the DS method, the main channel through which portfolios affect macroeconomic variables is through a multiplicative term of portfolio holdings and excess returns\(^{34}\). In a setting with high risk premia, therefore, any inaccuracies in the portfolio solution, when multiplied by a sizeable excess return, may translate to higher inaccuracies also for macroeconomic variables through discrepancies in the wealth-accumulation equation. Alternatively, one may expect the local method to perform worse directly because of a difficulty to capture a sizeable excess return.

In the following, we present our evaluation of these potential concerns for a concrete parametric example, in which case the model generates an equity premium of 1.7%. While, compared to model specification 1, we indeed find more substantial differences between local and global solution method, our assessment of the DS method is that it still continues to perform quite well, at least at short horizons.

5.1 A parametric example

Table 6 reports parameter values. We set country \(h \)’s coefficient of risk aversion to 8, and country \(f \)’s coefficient of risk aversion to be twice that of country \(h \), \(\gamma_f = 2\gamma_h = 16 \). The intertemporal elasticity of substitution, \(\psi \), in both countries is set to one fifth. The means of the exogenous endowment processes, and the persistences remain the same as in model specification 1. We consider a much higher volatility, though. We set the volatility of the ‘labor’ income shocks to \(\sigma_{Y_a} = 0.06 \), \(a = h, f \); the volatility of ‘capital income’ is taken to be 1.5 times higher, \(\sigma_{Y_b} = 0.09 \), for \(a = h, f \). This choice implies a standard deviation of

\(^{33}\)The main point of this section is to test the performance of the DS method in a setting with large risk premia. The model with one risky and one safe asset is the minimal setting which allows us to achieve this.

\(^{34}\)To be precise, and returning to our description of the DS method in section 3.2, these are the terms \(\alpha_{h,t-1}(r_{ht} - r_{ht}) \) and \(\alpha_{f,t-1}(r_{ft} - r_{bt}) \) in equation (10). Or, more precisely, in our setup of model specification 2, where trade in domestic equity is shut down, only the term \(\alpha_{f,t-1}(r_{ft} - r_{bt}) \).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor</td>
<td>β</td>
</tr>
<tr>
<td>Endogenous discount factor</td>
<td>η</td>
</tr>
<tr>
<td>Risk aversion γ_h, γ_f</td>
<td>ψ_h, ψ_f</td>
</tr>
<tr>
<td>Elasticity of intertemp. subst.</td>
<td>ψ_h, ψ_f</td>
</tr>
<tr>
<td>Capital income share</td>
<td>$Y_h/Y_h, Y_f/Y_f$</td>
</tr>
<tr>
<td>Annual mean output</td>
<td>Y_h, Y_f</td>
</tr>
<tr>
<td>Persistence $\rho_{Y_h}, \rho_{Y_f}, \rho_{Y_l}, \rho_{Y_l}$</td>
<td>$\sigma_{Y_h}, \sigma_{Y_f}, \sigma_{Y_l}$</td>
</tr>
<tr>
<td>Volatility, labor inc. endow.</td>
<td>$\sigma_{Y_h}, \sigma_{Y_f}, \sigma_{Y_l}$</td>
</tr>
<tr>
<td>Volatility, capital inc. endow.</td>
<td>$\sigma_{Y_h}, \sigma_{Y_f}, \sigma_{Y_l}$</td>
</tr>
<tr>
<td>Correlation $\text{cor}(Y_h, Y_l) = \text{cor}(Y_h, Y_f)$</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 6: Parameter values, model specification 2.

aggregate log-output of $\sigma(\log Y_h) = \sigma(\log Y_f) = 0.060$. The correlation between a country’s labor and capital income endowments is set to 0.5. We acknowledge that in certain dimensions, particularly the size of shocks that we assume, our parameterization can be considered extreme. This is as a shortcut to generating a sizeable risk premium in this model, without resorting to an addition of features that the finance literature have deemed important recently (e.g., adding disaster shocks or long-run risk in the vain of Bansal and Yaron (2004)).

Figure 7 presents policy functions for country h’s consumption share, equity holdings, bond holdings, equity price and bond price under the global solution, shown in panels A, C, E, G, I. Panels B, D, F, H and J of figure 7 show discrepancies between the global and the DS solution. The discrepancy for the consumption share of country h, equity holdings, bond holdings, equity prices, and bond prices are as large as 0.011, 0.040, 0.017, 0.013, and 0.0003 respectively. These differences are somewhat larger than in model specification 1, but also reflect the more extreme parameterization of the current setting.

Figure 8 compares time paths from a single series of realizations of the exogenous shock process of length 100. Both methods capture the same dynamic patterns of economic variables. Compared to model specification 1, the differences between the time paths generated by the two solution methods are slightly more pronounced. In particular, the maximum difference for the consumption share, bond holdings, equity price, bond price, and NFA are, respectively, 0.179, 0.230, 0.190, 0.050, and 197.81%. The maximum absolute differences of NFA and equity holdings are 0.122 and 0.031, respectively.

To understand these differences more systematically, it is instructive to study average simulated paths implied by the two methods. Figure 9 presents these average paths, period-by-period averages over 10000 simulations, starting each simulation run in the ‘average’ state with $Y_t = E_t (Y_t)$, and starting with $W_{h0} = 0$. Let us discuss the economic forces behind the evolution of average paths. Similar to the asymmetric setting in model 1, the two countries have different precautionary demands. Here, in model specification 2, the different strength of precautionary motives comes from the fact that country f is more risk averse than country h. We should expect this channel to lead to an increase in country f’s NFA position over time, or, equivalently, to a decrease in country h’s NFA position. However, there is an additional channel that we should expect to impact the evolution of the NFA position over time. Our model is parameterized to display large excess returns of the risky asset over the

\[\text{cor}(Y_h, Y_l) = \text{cor}(Y_h, Y_f) = 0.50 \]

\[\text{We abstract from also presenting a version of the global solution without EDF but borrowing limits, as the insights are largely the same as in model specification 1.} \]
Figure 7: Country h’s policy functions, model 2. Panels A,C,E,G,I present the policy functions for the global solution method. Panels B,D,F,H,J plot the discrepancy between the global and perturbation policy functions (with endogenous discount factor).

safe asset (‘equity premium’), and features a setting with heterogeneous investors, where one of the investors is more willing to trade higher risk for higher future returns. Since the less risk-averse investor invests more in the higher risk, and higher return asset, he earns the equity premium and we can expect this to positively affect his wealth position, that is, his
Figure 8: Single simulated time paths, model specification 2.
Labels ‘global’ and ‘local’ refer, respectively, to the global and DS solutions when the endogenous discount factor is present.
net foreign asset position. The expected path of the NFA position of both global and local method captures this effect. The equity premium produced by global and local method are very comparable, both produce an average excess return of the risky over the safe asset of 1.7%. These excess returns enter multiplicatively with the portfolio holdings of the risky asset in the wealth-accumulation equation. Since country h’s equity portfolio holdings are estimated to be higher under the global method than under the local, it affects country h’s NFA more positively, so that at the end of period 100 this effect compounds to NFA holdings of 0.211 (21.2% of domestic output) under the global method, which are 0.039 (3.9% of domestic output) higher, on average, than under the local method. The difference at the end of period 100 of the consumption share, equity holdings, and bond holdings are, respectively, 0.001, 0.007, and −0.005. By and large, and considering that our parametric example uses volatilities of our exogenous shock processes that are on the high end, we judge that the performance of the DS method remains very reasonable.

Table 7: Comparison of model moments, model specification 2.

Moments from panel simulations								
	global				local			
$\mu(\cdot)$	$\sigma(\cdot)$	$\rho(\cdot, Y^h)$	$\mu(\cdot)$	$\sigma(\cdot)$	$\rho(\cdot, Y^h)$			
NFAh	0.114	0.386	0.065	0.103	0.392	0.032		
c_h	0.503	0.010	0.398	0.503	0.011	0.383		
θ^h	0.078	0.060	-0.035	0.076	0.061	0.000		
b^h	-0.383	0.053	0.033	-0.377	0.030	-0.711		
q_f	6.021	1.060	0.664	6.024	1.060	0.664		
q_b	0.963	0.039	0.700	0.963	0.039	0.700		
r_f	1.058	0.124	0.186	1.058	0.124	0.187		
r_b	1.041	0.042	-0.534	1.041	0.042	-0.534		

Ergodic moments								
	global				local			
$\mu(\cdot)$	$\sigma(\cdot)$	$\rho(\cdot, Y^h)$	$\mu(\cdot)$	$\sigma(\cdot)$	$\rho(\cdot, Y^h)$			
NFAh	2.769	2.237		7.244	6.205			
c_h	0.570	0.054		0.737	0.202			
θ^h	0.510	0.344		1.267	1.003			
b^h	-0.3135	0.073		-0.208	0.656			
q_f	6.006	1.122		6.023	1.125			
q_b	0.962	0.041		0.963	0.041			
r_f	1.058	0.124		1.058	0.124			
r_b	1.041	0.044		1.040	0.044			

Table 7 presents model moments both for ‘panel simulations’ (10000 series of 100 periods) and ergodic moments (from a single simulation of length 100 million). The results on panel simulations capture the same findings as our visual presentation of average paths.

To interpret these differences economically, it is again useful to look at the implied welfare consequences of these differences. Welfare differences, conditional on $Y = E[Y]$ and $W_{h0} = 0$, between global and local method are found to be −19.815% and 8.913% when based on certainty equivalent consumption of the home agent or the foreign agent, respectively. These measures reflect substantially larger welfare differences compared to model specification 1; however, we acknowledge that they also reflect the high parameterization of shock volatilities.

The bottom part of table 7 presents simulated ergodic model moments. The difference in moments obtained from global and local method reiterate our findings from model speci-
Figure 9: Average simulated paths, model specification 2.
Labels ‘global’ and ‘local’ refer, respectively, to the global and DS solutions when the endogenous discount factor is present.
fication 1. When the NFA position travels far from the point of approximation, as happens over a longer time period, the local approximation method becomes inaccurate. While this finding is not specific to portfolio solution methods, this means that the DS method, like any local method, should be used only with caution when one is interested in ergodic behavior of an economy. It is not easy to determine exactly to what extent the differences in ergodic moments generated by the global and local solution methods are due to the presence of portfolio choice elements, or to the general problems that local solution methods have in capturing the ergodic properties of the model in the presence of near unit root behavior in wealth dynamics.

We find discrepancies in ergodic moments of similar magnitude in our model specification 1 (with small risk premia) and model specification 2 (with substantial risk premia). This is similar to [De Groot et al. (2014)] who also find considerable differences in ergodic moments generated by global and local solutions in a model with a single bond traded. This leads us to conclude that to a large extent, the differences in ergodic moments are not due specifically to the issues related to the approximation of the portfolio part of the model.

Finally, we use model specification 2 to assess the importance of another dimension in which the DS method might be expected to generate inaccuracies. [Rabitsch and Stepanchuk (2014)] study a 2-period version of a portfolio choice problem and find that the DS method neglects the effect of the size of the shocks on the portfolio solution. In the online appendix, we study how this affects the DS solution in the setting of our model specification 2. Summarizing the results, we do not find these effects to be large enough to generate sizeable discrepancies between the DS and the fully non-linear solution, so that the DS method continues to perform well in this setting as well.

6 Conclusions

This paper compares the performance of the local portfolio solution method of [Devereux and Sutherland (2010a, 2011)] relative to a global portfolio solution method. We present a general model framework and consider several specifications of this framework in our test suite: a symmetric country setting, standing in as an application of financial trade between advanced economies, and asymmetric country settings that reflect important features of asymmetry in financial trade, such as between advanced and emerging economies. The asymmetries looked at are differences in macroeconomic volatility, but more importantly, a setting in which one country (advanced) takes on more of risky than safe assets compared to the other country (emerging), and earns a sizeable risk premium on its portfolio. We find, whenever we look at the behavior at short horizons, that the DS method performs very well. This is especially true in settings where assets are similar and have similar return (that is, small risk premia), whether countries are symmetric or asymmetric. We find somewhat more pronounced differences in the setting with a sizeable risk premium, because of differences in the accuracy in which the return differential affects wealth accumulation. Nevertheless, the DS method continues to work reasonably accurate also there. At long horizons, to capture ergodic features of the economy, we document that global and local method can lead to strong differences, and that for such purpose the DS method should be used with caution only.
References

A Solution accuracy

We evaluate the solution accuracy by computing errors in the system of equilibrium conditions on a grid of wealth with 1001 nodes. (Recall that we used only 51 node to solve the system.)

Figure 10: Equilibrium errors in the symmetric setting, model specification 1.

Figure 11: Equilibrium errors in the asymmetric setting with $\sigma^h = 2\sigma^f$, model specification 1.

Figure 12: Equilibrium errors in model specification 2.
Figure 13: Gross stock of foreign assets and liabilities (data from Lane and Milesi-Ferretti (2007)), percent of country’s (or country group’s) GDP.

The group of advanced economies comprises: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK, and US. The definition of emerging economies follows Mendoza et al. (2009b): Argentina, Brazil, Chile, China, Colombia, Czech Republic, Egypt, Hong Kong, Hungary, India, Indonesia, Israel, Jordan, Korea, Malaysia, Morocco, Pakistan, Peru, Philippines, Poland, Russia, Saudi Arabia, Singapore, South Africa, Thailand, and Turkey.