Adaptive shrinkage in Bayesian vector autoregressive models

Florian Huber and Martin Feldkircher

1Vienna University of Economics and Business
2Oesterreichische Nationalbank (OeNB)

Abstract

Vector autoregressive (VAR) models are frequently used for forecasting and impulse response analysis. For both applications, shrinkage priors can help improving inference. In this paper we derive the shrinkage prior of Griffin et al. (2010) for the VAR case and its relevant conditional posterior distributions. This framework imposes a set of normally distributed priors on the autoregressive coefficients and the covariances of the VAR along with Gamma priors on a set of local and global prior scaling parameters. This prior setup is then generalized by introducing another layer of shrinkage with scaling parameters that push certain regions of the parameter space to zero. A simulation exercise shows that the proposed framework yields more precise estimates of the model parameters and impulse response functions. In addition, a forecasting exercise applied to US data shows that the proposed prior outperforms other specifications in terms of point and density predictions.

Keywords: Normal-Gamma prior, density predictions, hierarchical modeling

JEL Codes: C11, C30, C53, E52.
1 Introduction

Macroeconomists often face situations where the number of available observations is low relative to the number of potentially available time series. Especially in vector autoregressive models (VARs), the number of parameters quickly becomes prohibitively large even if the number of time series included is moderate. This translates into severe overfitting issues that ultimately lead to imprecise out-of-sample predictions.

In this study, we consider VAR models that describe the law of motion of a \(m \)-dimensional vector \(y_t \) for \(t = 1, \ldots, T \),

\[
y_t = A_1 y_{t-1} + \cdots + A_p y_{t-p} + \epsilon_t,
\]

with \(A_j (j = 1, \ldots, p) \) being a set of \(m \times m \) coefficient matrices associated with the \(p \) lags of \(y_t \). The errors in \(\epsilon_t \) are normally distributed with zero mean and variance-covariance matrix \(\Sigma \), which is a symmetric and positive definite matrix. The total number of autoregressive parameters is \(k = m(mp) \), and thus rises rapidly with the number of endogenous variables \(m \) and the number of lagged endogenous variables included. In addition, the \(v = m(m-1)/2 \) covariances and the \(m \) variances also have to be inferred from a possibly limited amount of data.

Taking a Bayesian stance, several ways of estimating the model in Eq. (1.1) have been proposed. Most prominently, Litterman (1979, 1986) and Doan et al. (1984) advocate a set of prior distributions that center the whole system on a multivariate random walk process. This implies that coefficient matrices of lag orders greater than unity are pushed towards a zero matrix. By specifying appropriate prior variance-covariance matrices, these priors induce sparsity by imposing more shrinkage to coefficients associated with higher lag orders, capturing the notion that the most recent past seems to be more important to predict \(y_t \). Other variations, like the sum of coefficients (Doan et al., 1984) or the dummy initial observation prior (Sims, 1993), provide several options to alleviate the curse of dimensionality in a VAR. Especially in large models, variants of the priors discussed have been particularly successful in forecasting applications (Bańbura et al., 2010; Carriero et al., 2009; 2012; Giannone et al., 2014).

More recently, the dependence and sensitivity of the aforementioned priors with respect to a lower dimensional vector of hyperparameters led to the development of hierarchical models that introduce another layer of priors on the hyperparameters. For instance, George et al. (2008) propose stochastic search variable selection (SSVS) priors (see George and McCulloch, 1993) that impose a mixture normal prior on each regression coefficient in the VAR. In another contribution, Giannone et al. (2015) extend the work of Sims and Zha (1998) and propose a hierarchical prior that estimates the hyperparameters of the Minnesota, the sum of coefficients and the dummy initial observation prior in a data-based fashion. They show that this hierarchical setup per-
forms well as compared to non-hierarchical priors and models estimated by means of maximum likelihood.

The SSVS prior and the prior of Giannone et al. (2015) both deal with the problem of hyperparameter selection in an elegant way, integrating out the hyperparameters in a Bayesian fashion. However, both specifications share a trade-off in terms of flexibility and complexity. For instance, the Minnesota prior induces a Kronecker structure on the likelihood, leading to symmetric shrinkage across equations. This implies that each equation is deemed to feature the same set of predictors. On the other hand, while the SSVS prior allows for different explanatory variables across equations, this prior only discriminates between inclusion and exclusion, ruling out cases in between. Moreover, the SSVS prior, although possessing convenient theoretical properties (Bhattacharya et al., 2015), imposes a severe computational burden if the model space to explore is large. This is typically the case in VAR applications where the number of parameters grows exponentially with the numbers of variables included.1

Another strand of the literature proposes double exponential prior on the coefficients, leading to the Bayesian variant of the LASSO (Park and Casella, 2008). Gefang (2014) propose a Bayesian LASSO for VAR models, showing that forecast results tend to be similar to the ones obtained from standard Minnesota-type priors. However, it is worth noting that a major limitation of the double exponential prior is its lack of flexibility. This prior ultimately relies on a single hyperparameter, implying that the specific choice of this parameter has serious implications for inference. To provide more flexibility, Griffin et al. (2010) introduce a Normal-Gamma prior that solves several shortcomings of the priors discussed hitherto. This prior, being a generalization of the double exponential prior, possesses far richer shrinkage properties as compared to alternative solutions.

The main contribution of this paper is to generalize the Normal-Gamma prior of Griffin et al. (2010) to the VAR case. We impose a conditionally Gaussian prior on each autoregressive coefficient in the VAR with idiosyncratic and global scaling factors. For these, we impose a set of Gamma priors. Moreover and since prior information on the sparsity of the error variances is typically not available, we also impose a set of Normal-Gamma priors on the covariances. Under this prior setup, we devise conditional posterior distributions for all parameters, leading to a relatively simple Metropolis-within-Gibbs sampling scheme. Our prior setup provides two sources of flexibility. First, the full coefficient matrix of the VAR is pushed towards a zero matrix a priori, thus providing global shrinkage. Second, a Gamma prior on the coefficients induces a fat-tailed marginal prior ensuring that non-zero signals are not too strongly put to zero (Polson and Scott, 2010). To provide additional flexibility, we also extend

1For a systematic comparison of different priors for VAR models see Koop (2013).
the standard Normal-Gamma prior by introducing additional global shrinkage parameters that exhibit symmetric shrinkage on certain regions of the parameter space.

We illustrate the merits of our approach by performing a set of simulation studies. Comparing the performance of our model with a set of competing models reveals that our approach improves upon competing models in terms of root mean square forecast errors and predictive likelihoods. To assess how our model performs in a typical real-data application we forecast output growth, wage growth, inflation and short-term interest rates in the US. Our modeling approach delivers excellent point and density predictions, emphasizing the accuracy gains stemming from the increased flexibility of the prior distribution adopted. In terms of density forecasts, these can even further improved by introducing ”column-wise” shrinkage to the Normal-Gamma specification. The merits of the Normal-Gamma framework also carry over to structural analysis. Looking at a contractionary US monetary policy shock, the NG-VAR yields responses that are consistent with established findings in the literature.

The paper is organized as follows. Section 2 introduces some useful notation, describes the model and our prior setup employed. In addition, the relevant conditional posterior distributions and the MCMC algorithm are outlined. Section 3 presents the main results of the simulation study. Section 4 presents a forecasting application for the US economy, and Section 5 extends the Normal-Gamma prior. Finally, the last section concludes the paper.

2 Econometric framework

This section proposes the Normal-Gamma prior for VAR models. The first subsection introduces additional notation that vastly simplifies prior implementation. After providing some information on the specific prior setup adopted for the autoregressive coefficients of the model, we proceed by specifying a prior on the covariances leading to a sparse representation of the variance-covariance matrix of the model.

2.1 The model

We set the stage by rewriting the model in Eq. (1.1) as a multivariate regression model with \(x_t = (y'_{t-1}, \ldots, y'_{t-p})' \) and \(A = (A_1, \ldots, A_p) \),

\[
y_t = Ax_t + \epsilon_t.
\]
(2.1)

Rewriting in terms of full-data matrices yields

\[
Y = XA' + \epsilon,
\]
(2.2)

with \(Y = (y_1, \ldots, y_T)' \), \(X = (x_1, \ldots, x_T)' \) and \(\epsilon = (\epsilon_1, \ldots, \epsilon_t)' \). The matrices \(Y \) and \(\epsilon \) are of dimension \(T \times m \) and \(X \) is of dimension \(T \times k \).
Several possible factorizations of the variance-covariance matrix are available (see, among others, Pourahmadi, 1999; Smith and Kohn, 2002). In this paper we follow George et al. (2008) and factorize Σ as

$$\Sigma^{-1} = HH'.$$ (2.3)

Here, H denotes an upper triangular matrix. We denote a typical non-zero off-diagonal element as h_{ij} and a typical main diagonal element is denoted as τ_{ii}. Often, economists are interested in identifying structural shocks and a prominent way of achieving identification is by using a Cholesky decomposition for Σ. Such a decomposition implies zero impact restrictions of the shocks and is sensitive to the ordering of the variables in y_t, which has to be justified based on economic grounds. As an alternative to pre-selected restrictions, George et al. (2008) propose using restrictions that are supported by the data itself, which we accomplish by placing the Normal-Gamma prior also on the variance-covariance matrix.

2.2 Prior setup

Traditionally, normally distributed priors are imposed on A and inverted Wishart priors are used for Σ. However, inverted Wishart priors make it difficult to elicit sophisticated prior structures on the covariances. Thus, we impose inverted Gamma priors on the squared main diagonal elements of H and normally distributed priors on all h_{ij}. All Gaussian priors used in this paper depend on idiosyncratic scaling factors that effectively control the degree of shrinkage for each coefficient. In addition, a global hyperparameter shrinks the full coefficient matrix towards zero.

Let us denote the stacked mk-dimensional vector of autoregressive coefficients as $\alpha = \text{vec}(A)$ with typical element α_i. The marginal prior distribution for each element of α is given by the following scale mixture of normals prior (Griffin et al., 2010),

$$p(\alpha_i) = \int \mathcal{N}(0, \psi_i^2) dG(\psi_i).$$ (2.4)

$G(\psi_i)$ is a mixing distribution, which in our case is specified as a Gamma distribution. We can state this prior in its hierarchical form as

$$\alpha_i | \psi_i \sim \mathcal{N}(0, 2/\lambda^2 \psi_i), \quad \psi_i \sim G(\vartheta, \vartheta),$$ (2.5)

with ϑ and λ being hyperparameters chosen by the researcher. Equation (2.5) implies that the prior on each regression coefficient is centered on zero conditional on an idiosyncratic scaling parameter ψ_i. This entails an individual degree of shrinkage for each α_i, irrespective of the size of the regression coefficient. Moreover, λ^2 is a global shrinkage parameter that shrinks the full coefficient vector towards zero (Polson and Scott, 2010).
Griffin et al. (2010) show that the unconditional prior density can be obtained by integrating out ψ_i of Eq. (2.5). It can be shown that the variance of the corresponding density is negatively related to λ_ϕ^2 and the excess kurtosis depends on ϑ_ψ. More specifically, if ϑ_ψ decreases, the prior places more mass on zero but at the same time, the tails of the density become heavier. This yields the convenient property that if the likelihood strongly suggests non-zero values of a given parameter, a very tight prior (i.e., ϑ_ψ set to a low value and λ_ψ^2 set to a high value) still provides enough flexibility to let the data speak. By contrast, a standard Minnesota prior would exert too much shrinkage, effectively pushing the posterior towards the prior.

For the free off-diagonal elements of H we also impose a Normal-Gamma prior,

$$h_{ij} | \phi_{ij} \sim N(0, 2/\lambda_\phi^2 \phi_{ij}), \ \phi_{ij} \sim G(\vartheta_\phi, \vartheta_\phi). \quad (2.6)$$

As before, ϑ_ϕ and λ_ϕ^2 are scalar hyperparameters controlling the tightness of the prior. The same intuition as in Eq. (2.5) applies. The global shrinkage parameter λ_ϕ^2 pushes all covariances in H towards zero. The shrinkage parameter ϕ_{ij} provides the flexibility needed to allow for non-zero covariances even if the global shrinkage parameter exerts a strong degree of overall shrinkage. Thus, if the data generating process assumes that H is sparse, our prior setup is capable of detecting covariances that are truly zero while covariances unequal to zero are not too strongly pushed towards zero. By contrast, a standard Minnesota prior typically assumes that Σ is a diagonal matrix a priori and thus shrinks all covariances towards zero.

We proceed by imposing additional priors on the hyperparameters of the prior described by Eq. (2.5) and Eq. (2.6). Since our prior setup leads to the Bayesian LASSO (Park and Casella, 2008) if $\vartheta_\psi = \vartheta_\phi = 1$, we impose an exponentially distributed prior on ϑ_k, $k \in \{\psi, \phi\}$ centered on unity,

$$\vartheta_k \sim Exp(1). \quad (2.7)$$

Moreover, we impose a Gamma prior on λ_k with hyperparameters c_{k0} and c_{k1},

$$\lambda_k \sim G(c_{k0}, c_{k1}). \quad (2.8)$$

We set $c_{k0} = c_{k1} = 0.01$ for all k to render this prior effectively non-informative for λ_k.

The final ingredient missing is the prior on the main diagonal elements of H, denoted as τ_{ii}^2, where we again impose a gamma distributed prior

$$\tau_{ii}^2 \sim G(a_i, b_i), \ i = 1, \ldots, m. \quad (2.9)$$

Similar to the hyperparameter setup for λ_k, a_i and b_i are set equal to 0.01 for all i to obtain a non-informative prior distribution for τ_{ii}^2.

6
2.3 Posterior distributions

Combining the prior distributions with the likelihood yields the posterior distribution. In our case, the conditional posterior distributions for most parameters are available in closed form, suggesting a relatively straightforward Markov chain Monte Carlo (MCMC) algorithm that iteratively simulates from the conditional posterior distributions.

The conditional posterior distribution of the autoregressive coefficients α is given by

$$\alpha|H, \psi, \phi, \lambda, Y \sim \mathcal{N}(\alpha, V_\alpha),$$

where $\psi = (\psi_1, \dots, \psi_{mk})'$ and conditional on H, the corresponding hyperparameters carry no additional information. The posterior mean $\overline{\alpha}$ and variance V_α take standard forms (Kadiyala et al., 1997; Karlsson, 2013),

$$V_\alpha = \left[(HH') \otimes (X'X) + \overline{V}_\alpha^{-1}\right]^{-1}$$

with \overline{V}_α being a $mk \times mk$ dimensional diagonal matrix with

$$(\overline{V}_\alpha)_{ii} = 2/\lambda_\psi^2 \psi_i.$$

Here the notation $[\bullet]_{ii}$ selects the i, ith element of a given matrix. The posterior mean $\overline{\alpha}$ is given by

$$\overline{\alpha} = V_\alpha \left((HH') \otimes (X'X)\hat{\alpha}\right).$$

$\hat{\alpha}$ denotes the least squares estimate of α.

It can be shown\(^2\) that the conditional posterior of ψ_i follows a generalized inverse Gaussian (GIG) distribution,

$$\psi_i|\vartheta_\psi, \lambda_\psi^2, \alpha_i \sim \mathcal{GIG}(\vartheta_\psi - \frac{1}{2}, \vartheta_\psi \lambda_\psi^2, \alpha_i^2).$$

The density of the GIG distribution is given by

$$f(x) \propto x^{n-1} e^{-(ax+b)x)/2}.$$

The parameters of the GIG distribution are $a, b > 0$ and $n \in \mathbb{R}$.

Unfortunately, the conditional posterior of ϑ_ψ has no well known form. This renders a Gibbs sampling step impossible. Fortunately, a Metropolis Hastings step can be implemented in a straightforward fashion, where the acceptance probability equals

$$\min \left[1, \frac{p(\vartheta_\psi) (\vartheta_\psi^2 \lambda_\psi^2 / 2)^{mk\vartheta_\psi}}{p(\vartheta_\psi^*) (\vartheta_\psi^* \lambda_\psi^2 / 2)^{mk\vartheta_\psi^*}} \Gamma(\vartheta_\psi^*) \left(\prod_{j=1}^{mk} \vartheta_\psi^* \right) \left(\prod_{j=1}^{mk} \psi_j^* \right)^{\vartheta_\psi^* - \vartheta_\psi} \right],$$

\(^2\)The corresponding derivations can be found in Appendix A.
with $\Gamma(\bullet)$ denoting the Gamma function and ϑ^*_ψ being the proposed value of ϑ_ψ. Equation (2.16) implies that the acceptance probability equals the ratio of the prior density on ψ_i times the prior on ϑ_ψ, denoted by $p(\vartheta_\psi)$.

The conditional posterior of λ^2_ψ is of a well-known form, namely a Gamma distribution,

$$\lambda^2_\psi|\vartheta_\psi, \psi \sim \mathcal{G}\left(c_{\psi 0} + \vartheta_\psi k, c_{\psi 0} + \vartheta_\psi / 2 \sum_{j=1}^{mk} \psi_j \right).$$ \hspace{1cm} (2.17)

The free off-diagonal blocks of H, denoted as $h_j = (h_{1j}, \ldots, h_{j-1j})'$, for $j = 2, \ldots, m$, follow a Gaussian distribution given by (George et al., 2008),

$$h_j|\phi, \lambda_\phi, A, Y \sim \mathcal{N}(\bar{h}_j, \mathbf{V}_{jh}),$$ \hspace{1cm} (2.18)

with $\phi = (\phi_{12}, \phi_{13}, \phi_{23}, \ldots, \phi_{m-1m})'$ and posterior variance being equal to

$$\mathbf{V}_{jh} = (\Omega_{j-1} + \mathbf{V}_{jh}^{-1})^{-1}.$$ \hspace{1cm} (2.19)

Here, we let Ω_{j-1} denote the upper left $(j-1) \times (j-1)$ submatrix of $\Omega(A) = (Y - XA')'(Y - XA')$, with typical element ω_{ij}, and \mathbf{V}_{jh} is a prior variance matrix with typical element given by

$$[\mathbf{V}_{jh}]_{ii} = 2/\lambda^2_\phi \phi_{ij}.$$ \hspace{1cm} (2.20)

The posterior mean is

$$\bar{h}_j = -\tau_{jj} \mathbf{V}_{jh} \omega_j,$$ \hspace{1cm} (2.21)

where $\omega_j = (\omega_{1j}, \ldots, \omega_{j-1j})'$.

As shown in George et al. (2008), the conditional posterior distribution of τ^2_{jj} is Gamma distributed,

$$\tau^2_{jj}|\phi, \lambda_\phi, A, Y \sim \mathcal{G}(a_i + T/2, \kappa_i).$$ \hspace{1cm} (2.22)

The rate parameter κ_i is given by

$$\kappa_i = \begin{cases} a_1 + \omega_{ij}/2 & \text{for } i = 1 \\ a_i + (\omega_{ii} - \omega'_i(\Omega_{i-1} + \mathbf{V}_{ih}^{-1})^{-1}\omega_i) & \text{for } i = 2, \ldots, m. \end{cases}$$ \hspace{1cm} (2.23)

Similar to the elements of the prior related to A, the conditional posterior distribution of ϕ_{ij} is GIG distributed with

$$\phi_{ij}|\vartheta_\phi, \lambda_\phi, h_{ij} \sim \mathcal{GIG}(\vartheta_\phi - \frac{1}{2}, \vartheta_\phi \lambda_\phi, h^2_{ij}).$$ \hspace{1cm} (2.24)

As in the case of the conditional posterior of ϑ_ψ, the conditional posterior of ϑ_ϕ has no well-known form and we thus have to use a simple random walk Metropolis

8
Hastings step to simulate from the target distribution. Again, the probability of accepting a candidate draw ϑ^* depends on the ratio of the prior densities on ϕ_{ij} times the prior. More specifically, the probability to accept ϑ' equals

$$\min \left[1, \frac{\pi(\vartheta^*) (\vartheta^* \lambda^2_{\phi}/2)^{v\vartheta^*}}{\pi(\vartheta) (\vartheta \lambda^2_{\phi}/2)^{v\vartheta}} \Gamma(\vartheta^*) \left(\prod_{i=1}^{m-1} \prod_{j=2}^{m} \phi_{ij} \right)^{\vartheta^*-\vartheta} \right]. \tag{2.25}$$

The final quantity needed is the global shrinkage parameter associated with the elements in H. Similar to Eq. (2.17), it is possible to show that the conditional posterior is Gamma distributed,

$$\lambda_{\phi|\vartheta, \phi} \sim G \left(c_{\phi 0} + \vartheta_{\phi} v, c_{\phi 0} + \vartheta_{\phi} / 2 \sum_{i=1}^{m-1} \sum_{j=2}^{m} \phi_{ij} \right). \tag{2.26}$$

A relatively straightforward MCMC scheme can be devised by iteratively drawing from the conditional posterior distributions described in Eq. (2.10) to Eq. (2.26). More specifically, the MCMC algorithm consists of the following steps

Step 0 Initialize all parameters of the model by using the corresponding OLS estimates or by drawing from the prior

Step 1 Draw α using Eq. (2.10)

Step 2 Draw h_j for $j = 2, \ldots, m$ from Eq. (2.18)

Step 3 Draw τ_{jj} for $j = 1, \ldots, m$ from Eq. (2.22) and compute $\Sigma^{-1} = HH'$

Step 4 Draw ψ_i for $i = 1, \ldots, k$ element-wise from Eq. (2.14) and ϕ_{ij} for $i = 1, \ldots, m-1; j = 2, \ldots, m$ from Eq. (2.24)

Step 5 Draw λ^2_{ψ} and λ^2_{ϕ} from Eq. (2.17) and Eq. (2.26).

Step 6 Draw ϑ_{ψ} and ϑ_{ϕ} with a univariate random walk Metropolis Hastings step

For Step 6, following Griffin et al. (2010), the proposal adopted is $\lambda_{j} = \exp(\varsigma_{j}z)\lambda_{j}$ for $j \in \{\psi, \phi\}$. ς_{j} is a tuning parameter set such that the acceptance probability lies between 20 and 40 percent and z is a standard normal random variable. For the simulation study and the empirical application that follows we repeat the algorithm 30,000 times and discard the first 15,000 as burn-in. Typical convergence diagnostics suggest that the Markov chain rapidly converges towards the target distribution.
3 Simulation results

In this section, we evaluate the performance of our model by means of a simple simulation exercise. We follow George et al. (2008) and simulate a moderately sized VAR(1) model with $T = 150$ and $T = 250$ and six endogenous variables. Furthermore, we assume that the true coefficient matrices A and H are sparse. More specifically, the true values of A and H are

$$A = \begin{bmatrix}
0.9 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.9 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.7 & 0 & 0.3 \\
0 & 0 & 0 & 0 & 0.9 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.4 \\
0 & 0 & 0 & 0 & 0 & 0.9
\end{bmatrix}, \quad H = \begin{bmatrix}
1 & 0.5 & 0.5 & 0.5 & 0.5 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}. \quad (3.1)$$

In our simulation exercise we investigate the differences between the posterior median and the true value of A and the free off-diagonal elements of H by means of root mean square errors (RMSE). As competing models, we include a simple BVAR coupled with a Minnesota prior where the hyperparameter of the Minnesota prior is chosen by maximizing the marginal likelihood over a grid of possible hyperparameters and a model estimated under a flat prior (i.e., estimated by maximum likelihood). Since Griffin et al. (2010) emphasized the importance of the shrinkage parameters ϑ_ψ and ϑ_ϕ, we first evaluate the performance of our model with respect to $\vartheta_\psi \in \{0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 0.9, 1, 2, 3\}$, while keeping $\vartheta_\phi = 0.1$ fixed.\footnote{This value is based on integrating out ϑ_ϕ as described in the previous section.} In the next step, we choose the value of ϑ_ψ that yields the minimum RMSE and investigate the impact of ϑ_ϕ (evaluated over the same grid of possible values). All VARs used in the simulation feature a single lag of the endogenous variables and no constant.

Table 1 depicts the findings of our simulation exercise. The first four columns refer to the results obtained by simulating $T = 150$ observations from the VAR model and the final four columns refer to a situation with $T = 250$ observations. The figures in the first two columns present the relative RMSEs of the Normal-Gamma VAR (NG) against a VAR estimated with a flat prior (FLAT) and relative to a VAR with a Minnesota prior (MN) for A, while the numbers in column three and four depict the results for the free off-diagonal elements in H. Numbers smaller than unity indicate outperformance of the NG-VAR relative to the other models.
<table>
<thead>
<tr>
<th>ϑ</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>0.420</td>
<td>0.453</td>
<td>0.354</td>
<td>0.353</td>
<td>0.415</td>
<td>0.438</td>
<td>0.257</td>
<td>0.258</td>
</tr>
<tr>
<td>.05</td>
<td>0.433</td>
<td>0.467</td>
<td>0.354</td>
<td>0.354</td>
<td>0.428</td>
<td>0.452</td>
<td>0.258</td>
<td>0.258</td>
</tr>
<tr>
<td>.1</td>
<td>0.456</td>
<td>0.492</td>
<td>0.353</td>
<td>0.352</td>
<td>0.452</td>
<td>0.476</td>
<td>0.257</td>
<td>0.258</td>
</tr>
<tr>
<td>.3</td>
<td>0.574</td>
<td>0.619</td>
<td>0.355</td>
<td>0.354</td>
<td>0.577</td>
<td>0.608</td>
<td>0.258</td>
<td>0.259</td>
</tr>
<tr>
<td>.6</td>
<td>0.734</td>
<td>0.790</td>
<td>0.356</td>
<td>0.355</td>
<td>0.758</td>
<td>0.798</td>
<td>0.258</td>
<td>0.259</td>
</tr>
<tr>
<td>.8</td>
<td>0.800</td>
<td>0.862</td>
<td>0.356</td>
<td>0.355</td>
<td>0.830</td>
<td>0.874</td>
<td>0.258</td>
<td>0.259</td>
</tr>
<tr>
<td>.9</td>
<td>0.824</td>
<td>0.887</td>
<td>0.355</td>
<td>0.354</td>
<td>0.856</td>
<td>0.901</td>
<td>0.258</td>
<td>0.259</td>
</tr>
<tr>
<td>1</td>
<td>0.843</td>
<td>0.907</td>
<td>0.355</td>
<td>0.354</td>
<td>0.876</td>
<td>0.922</td>
<td>0.258</td>
<td>0.259</td>
</tr>
<tr>
<td>2</td>
<td>0.917</td>
<td>0.987</td>
<td>0.356</td>
<td>0.355</td>
<td>0.945</td>
<td>0.995</td>
<td>0.258</td>
<td>0.259</td>
</tr>
<tr>
<td>3</td>
<td>0.933</td>
<td>1.004</td>
<td>0.356</td>
<td>0.355</td>
<td>0.958</td>
<td>1.009</td>
<td>0.259</td>
<td>0.260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>φ</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
<th>NG/FLAT</th>
<th>NG/MN</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>0.432</td>
<td>0.467</td>
<td>0.365</td>
<td>0.364</td>
<td>0.432</td>
<td>0.452</td>
<td>0.279</td>
<td>0.280</td>
</tr>
<tr>
<td>.05</td>
<td>0.433</td>
<td>0.468</td>
<td>0.370</td>
<td>0.369</td>
<td>0.431</td>
<td>0.451</td>
<td>0.286</td>
<td>0.286</td>
</tr>
<tr>
<td>.1</td>
<td>0.432</td>
<td>0.467</td>
<td>0.380</td>
<td>0.380</td>
<td>0.432</td>
<td>0.453</td>
<td>0.297</td>
<td>0.297</td>
</tr>
<tr>
<td>.3</td>
<td>0.434</td>
<td>0.469</td>
<td>0.441</td>
<td>0.440</td>
<td>0.433</td>
<td>0.453</td>
<td>0.353</td>
<td>0.354</td>
</tr>
<tr>
<td>.6</td>
<td>0.434</td>
<td>0.470</td>
<td>0.497</td>
<td>0.496</td>
<td>0.434</td>
<td>0.454</td>
<td>0.404</td>
<td>0.405</td>
</tr>
<tr>
<td>.8</td>
<td>0.434</td>
<td>0.469</td>
<td>0.517</td>
<td>0.516</td>
<td>0.434</td>
<td>0.455</td>
<td>0.421</td>
<td>0.422</td>
</tr>
<tr>
<td>.9</td>
<td>0.435</td>
<td>0.470</td>
<td>0.522</td>
<td>0.522</td>
<td>0.434</td>
<td>0.454</td>
<td>0.426</td>
<td>0.427</td>
</tr>
<tr>
<td>1</td>
<td>0.435</td>
<td>0.470</td>
<td>0.528</td>
<td>0.527</td>
<td>0.433</td>
<td>0.453</td>
<td>0.430</td>
<td>0.431</td>
</tr>
<tr>
<td>2</td>
<td>0.434</td>
<td>0.469</td>
<td>0.546</td>
<td>0.545</td>
<td>0.435</td>
<td>0.455</td>
<td>0.444</td>
<td>0.445</td>
</tr>
<tr>
<td>3</td>
<td>0.435</td>
<td>0.470</td>
<td>0.548</td>
<td>0.547</td>
<td>0.434</td>
<td>0.454</td>
<td>0.446</td>
<td>0.447</td>
</tr>
</tbody>
</table>

Notes: The figures refer to the relative RMSE of the vector autoregressive model coupled with a Normal-Gamma prior (NG) against either a VAR estimated with maximum likelihood, i.e., a flat prior (FLAT), or with a Minnesota prior (MN). The first part of the Table corresponds to $T = 150$ and the second part to $T = 250$. Results are shown for the autoregressive coefficients A and the free off-diagonal elements in H. Results based on 10,000 posterior draws out of a chain of 20,000 draws and 150 replications of the simulation exercise.

Table 1: Simulation results: Relative root mean square errors for A and H
The upper part of Table 1 suggests that the specific value of ϑ_ψ proves to be quite influential in terms of improving the precision of parameter estimates for A. Smaller values are typically associated with lower RMSEs, indicating that the shrinkage induced through the prior is not becoming excessively large, even for relatively low values of ϑ_ψ. Note that both the BVAR with the Minnesota prior and the flat prior VAR are outperformed by large margins. While the parameter estimates of the flat prior VAR model are characterized by a large amount of non-zero values, even if the true parameters equal zero, the Minnesota prior tends to excessively shrink the parameter matrix, effectively pushing estimates for parameters that are non-zero towards zero. This leads to inferior performance and larger RMSEs.

The results for A directly carry over to the estimates of the free off-diagonal elements of H. Here it can be seen that the NG prior strongly improves the accuracy of the estimates, outperforming the estimate obtained from a flat prior VAR by roughly 60%. The accuracy gains are comparable when the model is benchmarked against the Minnesota prior, suggesting that in terms of estimating the covariance matrix, the Minnesota prior and the VAR coupled with a flat prior both perform relatively poor as compared to the NG-VAR.

Comparing the results between $T = 150$ and $T = 250$ suggests that there are no discernible differences in terms of the performance of the NG-VAR. This rather surprising finding could be due to the fact that our simulation design mirrors a situation where the number of parameters is moderate relative to the length of the data set. We conjecture that our model improves even more if the number of parameters is increased relative to the length of the dataset.

Finally, the upper part of Table 1 suggests that varying ϑ_ψ tends to be important for the estimates of A, the impact on the estimates of H is negligible. This finding also holds true in the case where we vary ϑ_ϕ.

To gain further insights on where the accuracy gains stem from, Fig. 1 depicts the posterior distributions of the h_{ij}s along with the actual value (in black), the posterior median (in orange) and the ML estimate (in blue). In addition, we impose the prior described in the previous section on ϑ_ϕ and ϑ_ψ.

4For instance, if we increase the number of lagged endogenous variables the outperformance of the NG-VAR is even more pronounced. The specific results are available upon request.
Notes: Posterior distribution of the free elements of H'. The red line corresponds to the actual value, the orange line to the posterior median and the blue line to the estimate obtained by using a flat prior. The numbers below the figure are the actual values.

Fig. 1: Posterior distribution of H'

As can be seen from the figure, the NG-VAR successfully shrinks the covariances towards zero. The standard VAR model produces estimates that are often non-zero, even if the true parameter equals zero. Note that in the case of non-zero covariances, the NG-VAR does not push too strongly towards zero, providing enough flexibility in the presence of strong global shrinkage.

The impulse response functions (IRF) for the NG-VAR along with the impulses obtained from a flat prior VAR are shown in Fig. 2. The dashed blue lines represent the 16th and 84th credible intervals and the solid blue line is the posterior median.
of the NG-VAR impulse response functions. For comparison, the gray shaded areas correspond to the 16th and 84th credible sets obtained from a flat prior VAR. The solid black line denotes the true value of the simulated response.

An interesting case arises if the simulated response of a given variable is zero. Here, inference under the flat prior can be quite misleading. For example in the first row, first column of Fig. 1 the flat prior indicates responses that are significantly different from zero (i.e., zero is not included in the gray shaded area). The same applies to the response shown in the sixth row, second column. By contrast, the NG-VAR, although not perfectly, shrinks these responses towards zero.

More generally, credible sets for impulse responses based on the NG-VAR are much tighter compared to the ones related to the flat prior VAR. For example, responses in the first column show much tighter credible sets and responses under the flat prior are sometimes way off the simulated responses. In very few cases, the simulated response lies outside the credible set of the NG-VAR (e.g., row 4 and column 4). Even for these cases the NG-VAR improves upon the flat prior VAR and the associated median response is closer to the simulated response compared to the one generated by the flat prior VAR.
Notes: Posterior distribution of impulse responses of the VAR with NG prior (16th and 84th credible sets in dashed blue, median in solid blue) and a flat prior VAR (the shaded area represents the 16th and 84th credible interval). The solid black line corresponds to the true value of the simulated impulse responses. The rows represent the responses of variables one to six to the six orthogonalized shocks (in the columns). The numbers below the figure are the actual values. Results based on 5,000 posterior draws out of a chain of 15,000 posterior draws.

Fig. 2: Posterior distribution of impulse responses along with the actual realization.
4 Application: Modeling US macroeconomy

This section applies the NG-VAR to a US macroeconomic dataset. The following subsection provides a brief overview of the data used and the corresponding transformations. In addition, information on the specification of the model and the competitors are provided. The second subsection presents the results of the forecasting exercise.

4.1 Data overview and model specification

We extend the data used in Smets and Wouters (2003) and Geweke and Amisano (2012) to span the period from 1947Q2 to 2014Q4. Data are on quarterly basis and comprise the log differences of investment, real GDP, wages, consumer prices and the Federal Funds Rate (FFR). The time period covered includes spikes associated with recessions, in particular so in the aftermath of World War II, around 1980 when US Fed chairman Paul Volcker started fighting inflation by aggressively, and in the aftermath of the global financial crisis. In light of the quarterly frequency of our data we include \(p = 4 \) lags of the endogenous variables for all models considered. As competitors, we include a Bayesian VAR with a Minnesota prior where the hyperparameters are selected by maximizing the marginal likelihood over a grid of possible values (Carriero et al., 2015). For the Minnesota prior we set the prior mean equal to zero for all coefficients, because our data are assumed to be stationary. Since the Bayesian LASSO is nested within our approach if we restrict \(\psi = \phi = 1 \), we also include it as a possible competing model (labeled LASSO). Finally, we include a flat prior VAR and a random walk without drift to assess how much the VAR structure improves predictions relative to a no-change forecast.

4.2 Forecasting results

In this section we provide results of the forecasting exercise. We evaluate both point forecasts and density forecasts by means of the RMSE and log predictive scores (LPS)\(^5\), respectively. Forecasts are evaluated over a long hold-out sample spanning the period from 1981Q1 to 2014Q1 and for the one-step and four-steps-ahead forecast horizon. We use a recursive forecasting design that consequently expands the initial estimation window until the end of the sample is reached.

\(^5\)For a general discussion on the properties of the log predictive score, see Geweke and Amisano (2010).
Table 2: Out-of-sample performance relative to the random walk model in terms of the sum of log predictive scores (LPS) and the root mean square error (RMSE): 1981:Q1 to 2014:Q4

Table 2 summarizes the results. The top panel shows the differences of the sum of log predictive scores over the hold-out sample with respect to the cumulative LPS of a simple random walk benchmark model. Positive values indicate superior forecasting accuracy compared to the naive benchmark. For all variables considered, we see that the Normal-Gamma model outperforms its competitors systematically at the one-step-ahead forecast horizon and in almost all cases four steps ahead. In terms of overall predictive power, the LPS metric attributes the Normal-Gamma approach the best forecast performance at both horizons.

A very similar picture arises when assessing forecast quality by means of the RMSE. Albeit the naive model is hard to beat at the one-step ahead forecast horizon, the Normal-Gamma framework yields improvements in two out of four variables and for almost all variables at the four step ahead forecast horizon. Consistent with the findings based on LPS, the closest competitor to the Normal-Gamma prior turns out to be the LASSO prior, whereas the widely used Minnesota prior and a flat prior VAR perform worst.

While the accuracy improvements in terms of point predictions are rather muted, the pronounced outperformance in terms of LPS suggests that accuracy gains stem from higher moments of the predictive density. This is mainly due to the fact that the NG-VAR and the LASSO specification also provide additional shrinkage on the covariances of the system, reducing estimation uncertainty and ultimately leading to more precise density predictions.
To investigate this issue further, Fig. 3 evaluates the forecast performance over time for the one-step-ahead forecast horizon. The left panel depicts the evolution of the cumulative LPS over time while the right panel shows the evolution of the cumulative sum of squared forecast errors over time. Here, the priors yield a very similar forecasting performance with the quality of forecasts deteriorating during times of well-known episodes of economic crises. For example, for all variables a considerable decrease in the LPS score is witnessed around 2008, mirrored in a sharp increase in the RMSE. Forecast performance also deteriorates around 1990, a period that was characterized by the first Gulf war and a related oil price shock, and around 2000, a time frame that featured the burst of the dot-com bubble. While the Normal-Gamma prior ranges always among the top-performing priors throughout the hold-out sample, it does a particularly good job in forecasting the Federal Funds rate and inflation.

Last, Fig. 4 shows the LPS evaluated for the joint predictive likelihood for the four variables at the one-step-ahead forecast horizon. This joint predictive likelihood is obtained by integrating out the other variables in y_t not further investigated in the present forecasting comparison. Here it becomes evident that the naive model and the flat prior VAR perform worst, and the difference in LPS scores relative to the Normal-Gamma prior even widens from the beginning of the 1990s. That is, the benefits of the Normal-Gamma prior are particularly evident in the most recent period of the hold-out sample where forecast gains of the Normal-Gamma prior are even more pronounced compared to its strongest competitor, the LASSO prior.

6Results based on the full predictive density are quite comparable and available upon request.
Cumulative log predictive likelihood

(a) GDP

Cumulative sum of squared forecast errors

(b) Inflation

Notes: Cumulative log predictive scores and cumulative sum of squared forecast errors over the hold-out sample (1981Q1 to 2014Q4). Results based on 5,000 posterior draws out of a chain of 15,000 posterior draws.
Notes: Cumulative log predictive scores and cumulative sum of squared forecast errors over the hold-out sample (1981Q1 to 2014Q4). Results based on 5,000 posterior draws out of a chain of 15,000 posterior draws.

Fig. 3: Evolution of the one-step ahead cumulative predictive likelihood along with the corresponding cumulative sum of squared forecast errors: (a) GDP, (b) real wages, (c) consumer price inflation, and (d) federal funds rate.
Fig. 4: Evolution of the one-step ahead cumulative joint predictive likelihood.

4.3 Dynamic responses of selected macroeconomic quantities

In this subsection we examine the response generated by the NG-VAR and a flat prior VAR to a monetary policy shock.

Figure 5 depicts the responses of output, real wages, inflation and interest rates to a one standard deviation monetary policy shock in the US. We use a recursive ordering with the short-term interest rate ordered last (the ordering is consumption, investment, real GDP growth, hours worked, inflation, real wages and the short-term interest rate). Similar to Fig. 2, the dashed blue lines depict 16th and 84th credible intervals and the blue solid line is the posterior median of impulse responses of the NG-VAR. Moreover, the gray shaded areas again represent the 16th and 84th credible sets of impulse responses for a flat prior VAR.

Figure 5 (a) displays the dynamic response of output growth to a contractionary monetary policy shock. In line with the literature, real GDP growth decreases significantly in the medium run, with output reactions turning insignificant after around 12 quarters. Comparing the responses of the flat prior VAR, the NG-VAR generates more
Notes: The dashed blue lines represent the 16th and 84th credible sets and the blue line denotes the median of impulse responses from the NG-VAR. The gray shaded represent the 16th and 84th credible interval of impulse responses of a flat prior VAR.

Fig. 5: Impulse responses of selected macroeconomic variables to a monetary policy shock

modest effects on output growth. In addition, the shape of the impulses suggests that the effect of monetary policy is somewhat longer lasting under a flat prior.
Turning to real wage growth, shown in Fig. 5 (b), we find that under a flat prior VAR model, real wages tend to decline significantly and persistently so. By contrast, responses of the NG-VAR indicate that the effect on wage growth is close to zero and estimated with a lot of uncertainty. Modest reactions of wage growth to a monetary policy shock have been found in Christiano et al. (2005) and are consistent with New Keynesian models of the business cycle that incorporate nominal rigidities into the modeling framework.

Finally, Figs. 5 (c) and (d) present the responses of inflation and short-term interest rates. Note that while both specifications produce a price puzzle, i.e., inflation acceleration in response to contractionary monetary policy, median effects are much smaller based on the NG-VAR. Moreover and looking at the credible sets, the positive response of inflation is barely significant under the NG-VAR but highly so under the flat prior VAR. The responses of interest rates appear to be quite similar for both priors, with the effect on interest rates being slightly more persistent under the NG-VAR.

5 Extending the basic Normal-Gamma prior

In this section we relax the assumption of a single global shrinkage parameter λ_ψ and introduce three modifications of the Normal-Gamma prior setup of Section 2.

5.1 Three modifications

We modify the Normal-Gamma prior by introducing the following generalizations

1. The first modification introduces equation-specific shrinkage parameters and thus shrinks each row of A towards a zero matrix. This implies that distinct parameters $\lambda_{\psi j}$ and $\vartheta_{\psi j}$ for $j = 1, \ldots, m$ are introduced to effectively allow for a different degree of sparsity across equations. This is predicated by the fact that some variables may be better represented by small-scale models.

2. In the second modification we introduce k shrinkage parameters $\lambda_{\psi i}, \vartheta_{\psi i}$ ($i = 1, \ldots, k$) that shrink certain columns of A towards zero. Thus, if the researcher believes that some elements of x, tend to be unimportant to predict y, then the corresponding columns of A are pushed towards a zero vector.

3. Finally, we introduce m additional shrinkage parameters that shrink the columns related to all lagged endogenous variables. Hence, if we exclude the ith element of y_{t-1}, y_{it-1}, we also exclude all p lags of y_{it}. This implies that if variable i in y_{t-1} appears to be irrelevant to predict y, we do not only exclude y_{it-1} but also $y_{it-2}, \ldots, y_{it-p}$.
The first two modifications of the Normal-Gamma prior have recently been applied in Kastner (2016) in a factor stochastic volatility framework to obtain a sparse representation of the factor loadings.

The conditional posterior distributions outlined in Section 2.3 still apply with some minor modifications that are derived in a straightforward fashion. Note that apart from obvious alterations to the posterior moments in Eq. (2.12) and Eq. (2.14) to account for different λ_{ψ_i}s, the product and sum in Eqs. (2.16) and (2.17) have to be modified to include only the relevant ψ_js. More information can be found in Appendix A.

5.2 Forecasting evidence

In this subsection we assess whether these modifications pay off in terms of forecast accuracy. Apart from the introduced generalizations, the setting is exactly the same as the one presented in Subsection 4.2.

Table 3 displays the results across the different alterations of the Normal-Gamma prior. Normal-Gamma again presents the results of our baseline Normal-Gamma prior with a single global shrinkage parameter while Normal-Gamma row-wise is the model based on equation-specific shrinkage parameters and column-wise presents the findings based on shrinking each column of X_t towards zero with a distinct parameters. Finally, block-wise corresponds to the specification that introduces m additional shrinkage parameters to effectively exclude certain lagged elements of y_t entirely from X_t.

Our findings suggest that the performance of the baseline prior can still be improved considerably in terms of density predictions. The column-wise specification, which constitutes the most flexible prior framework along the variants discussed, exhibits a strong forecasting performance across all variables and for both time horizons considered. Note that the single best performing specification for GDP predictions proves to be the block-wise specification, improving upon the second strongest specification considerably. For all other variables, the block-wise specification tends to perform slightly worse.
Table 3: Out-of-sample performance of different variants of the NG-VAR relative to the random walk model in terms of the sum of log predictive scores (LPS) and the root mean square error (RMSE): 1981:Q1 to 2014:Q4

For some variables, we see that the additional flexibility slightly improves density predictions. This finding, however, does not carry over to point predictions. Inspection of the lower part of Table 3 reveals that the accuracy of point forecasts is basically the same across the different variants of the Normal-Gamma prior, suggesting that additional shrinkage parameters exhibit performance-enhancing effects on higher order moments of the predictive density, as opposed to mere mean predictions.

6 Closing remarks

In this paper we generalize the shrinkage prior put forward in Griffin et al. (2010) to the VAR case. This framework induces global shrinkage by pushing the full coefficient matrix of the model towards zero a priori. Imposing a set of Gamma priors results into fat-tailed prior on the coefficients. This ensures that the global shrinkage factor does not push coefficients too strongly towards zero and allows for a great deal of flexibility.

We evaluate the merits of the Normal-Gamma prior for the VAR case by means of a simple simulation exercise and an out-of-sample forecast competition. Our findings show that the precision of the estimates for the autoregressive coefficients and the covariances originating from the NG-VAR systematically outperform estimates stemming from competing models like a typical Bayesian VAR with a Minnesota prior and a flat prior VAR. This holds also true in case the quantity of interest are impulse re-
response functions. Here, the NG-VAR produces tighter credible sets than a flat prior VAR and the median response is always close to the simulated values. In some cases, the VAR with a diffuse prior even indicates significant non-zero responses albeit the simulated response is zero. This is not the case when using the NG-VAR.

In a real data application, we examine the usefulness of the NG-VAR by evaluating forecasts and impulse response functions for a medium-VAR with US data put forth in Smets and Wouters (2003) and extended in Geweke and Amisano (2012). The results reveal the NG-VAR forecasts outperforming its competitors systematically at the one-step-ahead forecast horizon and in almost all cases four steps ahead. Looking at the responses to a contractionary monetary policy shock, we find negative and tightly estimated effects on output growth, and a rather persistent rise in the short-term interest rate. Responses of inflation and real wage growth are accompanied by wide credible sets. These results are well in line with existing literature and demonstrate the usefulness of the NG-VAR approach not only in terms of forecasting but also for structural analysis.

Finally, we introduce three extensions of the Normal-Gamma prior adding more flexibility to the baseline specification. Our findings suggest that the modified Normal-Gamma priors excel in density forecasts, while improvements in point predictions are modest.
References

Kastner G (2016) Sparse Bayesian Latent Factor Stochastic Volatility Models for Dy-
namic Covariance Estimation in High-Dimensional Time Series. Mimeo
Appendix A Derivations

In this section we derive the relevant posterior quantities for the baseline Normal-Gamma prior and the extensions presented in Section 5.

A.1 Derivations related to the baseline Normal-Gamma prior

To derive Eq. (2.14), note that due to the hierarchical nature of the model, the conditional posterior of ψ_i is independent from the data. Combining the likelihood with the prior yields

$$p(\psi_i | \vartheta, \lambda^2, \alpha_i) \propto \psi_i^{-\frac{1}{2}} \exp \left(-\frac{\alpha_i^2}{2\psi_i} \right) \times \psi_i^{(\vartheta - 1)} \exp \left(-\frac{\vartheta \lambda^2 \psi_i}{2} \right)$$

(A.1)

$$\propto \psi_i^{(\vartheta - 0.5) - 1} \exp \left(-\frac{\alpha_i^2}{\psi_i} + \frac{\vartheta \lambda^2 \psi_i}{2} \right)$$

(A.2)

where we exploit the scaling property of the Gamma distribution to rewrite the prior in Eq. (2.5) as

$$\alpha_i | \psi_i \sim \mathcal{N}(0, \psi_i), \ \psi_i \sim \mathcal{G}(\vartheta, \vartheta \lambda^2 / 2).$$

(A.3)

Equation (A.2) is the kernel of the GIG distribution described in Eq. (2.14).

Equation (2.17) is derived by combining the Gamma likelihood with the prior and simplifying yields

$$p(\lambda | \psi, \vartheta) \propto \lambda^{(k \vartheta + c \psi_0) - 1} \times \exp \left(\frac{c \psi_1 + \vartheta \sum_{j=1}^{mk} \psi_j \lambda}{2} \right),$$

(A.4)

which is the kernel of a Gamma density with shape parameter equal to $k \vartheta + c \psi_0$ and rate parameter given by $c \psi_1 + \vartheta \sum_{j=1}^{mk} \psi_j$.

The derivation of Eq. (2.24) closely resembles the derivation of Eq. (2.14). Finally, the derivation of Eq. (2.26) is analogous to the derivation of Eq. (2.17).

A.2 Derivations related to the three extensions in Section 5

As noted in Section 5, the relevant conditional posterior distributions outlined in Section 2 can still be used with only minor alterations.
The generalization of Eq. (2.12) associated with the first modification (row-wise) is given by

\[
[\mathbf{V}_\alpha]_{ii} = \begin{cases}
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_1^{(1)} = \{1, \ldots, k\} \\
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_2^{(1)} = \{k + 1, \ldots, 2k\} \\
 \vdots & \\
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_m^{(1)} = \{(m-1)k + 1, \ldots, mk\}.
\end{cases}
\]

(A.5)

For the column-wise specification, the corresponding variant of Eq. (2.12) is

\[
[\mathbf{V}_\alpha]_{ii} = \begin{cases}
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_1^{(2)} = \{1, 1 + k, \ldots, 1 + (m-1)k\} \\
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_2^{(2)} = \{2, 2 + k, \ldots, 2 + (m-1)k\} \\
 \vdots & \\
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_k^{(2)} = \{k, 2k, \ldots, mk\}.
\end{cases}
\]

(A.6)

Finally, for the third variant we specify the prior variance such that

\[
[\mathbf{V}_\alpha]_{ii} = \begin{cases}
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_1^{(3)} = \{1, 1 + m, 1 + 2m, \ldots, 1 + (p-1)m\} \\
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_2^{(3)} = \{2, 2 + m, 2 + 2m, \ldots, 2 + (p-1)m\} \\
 \vdots & \\
 2/\lambda_\psi^2 \psi_i & \text{if } i \in A_m^{(3)} = \{m, 2m, \ldots, k\}.
\end{cases}
\]

(A.7)

Under Eqs. (A.5) to (A.7), the conditional posterior of \(A \) remains the same. The modified counterpart of Eq. (2.14) is given by

\[
\psi_i | \vartheta, \lambda_\psi^2, \alpha_i \sim GIG(\vartheta \psi_j - \frac{1}{2}, \vartheta \psi_j \lambda_\psi^2, \alpha_i) \quad (A.8)
\]

where we choose the appropriate parameters \(\lambda_\psi \) and \(\vartheta \psi_j \) if \(i \) belongs to the appropriate set \(A_s^{(n)} \).

The acceptance probability in 2.16 is modified to take into account that we sample different \(\vartheta \psi_j \),

\[
\min \left[1, \frac{p(\vartheta \psi_j^*) (\vartheta \psi_j \lambda_\psi^2 / 2)^{k \vartheta \psi_j} \Gamma(\vartheta \psi_j)}{p(\vartheta \psi_j^*) (\vartheta \psi_j \lambda_\psi^2 / 2)^{k \vartheta \psi_j} \Gamma(\vartheta \psi_j)} \prod_{j \in A_s^{(n)}} \psi_j \right]^{\vartheta \psi_j^* - \vartheta \psi_j}, \quad (A.9)
\]

for variants \(n = 1, 2, 3 \).
Similarly, we adapt Eq. (2.17) as

\[
\lambda_{\psi j}^2 | \vartheta_{\psi j}, \psi \sim \mathcal{G} \left(c_{\psi 0} + \vartheta_{\psi j} q_j^{(n)}, c_{\psi 0} + \vartheta_{\psi} / 2 \sum_{j \in A_s^{(n)}} \psi_j \right). \tag{A.10}
\]

Here, we let \(q_j^{(n)} = \#(A_s^{(n)})\) denote the cardinality of \(A_s^{(n)}\).

Steps 4 and 5 of the MCMC algorithm presented in Section 2 have to be modified to draw distinct \(\lambda_{\psi j}^2\) and \(\vartheta_{\psi j}\) for each variant of the prior. These steps are straightforward to implement and do not increase the computational burden considerably.