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We consider the stochastic economic lot scheduling problem (SELSP) with lost sales and random demand,

where switching between products is subject to sequence-dependent setup times. We propose a solution

based on simulation optimization using an iterative two-step procedure which combines global policy search

with local search heuristics for the traveling salesman sequencing subproblem. To optimize the production

cycle, we compare two criteria: minimizing total setup times and evenly distributing setups to obtain a more

regular production cycle. Based on a numerical study, we find that a policy with a balanced production cycle

leads to lower cost than other policies with unbalanced cycles.

Keywords: Inventory, Multi-Product, Lot-Sizing and Scheduling, Stochastic Demand, Sequence-Dependent

Setups, Simulation Optimization

1. Introduction

The integration of lot-sizing, scheduling and safety stock planning is a major challenge in multi-

product inventory optimization under stochastic demands. Customized manufacturing and the

use of the same manufacturing facilities by multiple products requires investments into flexible

resources which need to be managed effectively with respect to utilization and inventories. Increas-

ing product variety poses an additional challenge. Especially in the process industry, lot-sizes

and production sequences play an important role where setup times considerably decrease facility

utilization (see, e.g., Kallrath (2002)). The mainstream planning approach for these problems is

to decompose the integrated into several sequential planning problems, typically a deterministic

lot-sizing and scheduling problem modelled as a mixed-integer program and a safety stock plan-

ning problem using stochastic models. There exist only few approaches that follow an integrated
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approach, e.g., the (dynamic) capacitated lot-sizing problem under random demands (Helber et al.

2013) or the stochastic economic lot-scheduling problem (SELSP) we consider in this manuscript.

Vaughan (2007) compares different scheduling and sequencing options for the stochastic economic

lot scheduling problem. The literature on the SELSP is reviewed in Sox et al. (1999) and Winands

et al. (2011).

One dominant assumption in many existing approaches is that setup costs and especially setup

times are independent of the chosen production sequence. However, there are several practical

problems where sequence-dependency plays a major role. First, there can be significant setup times

between different product families (major setups), but small or negligible setup times between

individual products belonging to the same family (see e.g. Karalli and Flowers (2006)). Second,

setup times between products may be asymmetric, which includes the special case of one-way setup

times, for instance due to different cleaning requirements or added machinery tools. Furthermore,

the amount of required setup time between items of a certain family might be identical, or lin-

early (progressively, degressively) increasing. Overviews on available approaches for lot-sizing and

sequencing problems with sequence-dependent setup costs and times are available in Allahverdi

et al. (1999) and Allahverdi et al. (2008). Dobson (1992) analyzes the deterministic ELSP with

sequence dependent setup times using the time-varying lot-size approach which was refined recently

in Shirodkara et al. (2011). Liberopoulos et al. (2013) analyze the case of a stochastic economic

lot-scheduling problem with restrictions in the production sequence.

Our model and the analysis are based on Löhndorf and Minner (2013), who analyze a similar

problem under the assumption that setup times are independent of the sequence. They model

the problem as a Semi-Markov Decision Problem and compare Approximate Dynamic Program-

ming with direct policy search for fixed-cycle and base-stock policies using simulation optimization.

Due to the complexity of the problem, several (meta-)heuristics combined with simulation have

been proposed. Wagner and Smits (2004) suggest a local search approach. Paternina-Arboleda

and Das (2005) develop a multi-agent reinforcement learning approach. Kämpf and Köchel (2006)
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use a genetic algorithm-based simulation optimization approach to find the parameters of struc-

tured policies. For a more detailed literature review, we refer to Löhndorf and Minner (2013). The

sequence dependence of setup times adds another dimension of complexity to the problem. Even

the deterministic version of the problem, the sequence dependent economic lot-scheduling problem

(SD-ELSP), requires solution of a traveling salesman problem as a subproblem. Due to the over-

all problem complexity, we resort to a black box approach based on simulation optimization for

simultaneously finding production cycles, base-stock-levels, and production frequencies. The use of

simulation increases the scope of our method, as it allows practitioners to describe a production

process using a simulation model, which offers a detailed but yet user-friendly representation of the

actual production process. Based on this approach, we demonstrate that straightforward solutions

to the SD-ELSP or SELSP are insufficient by comparing different production policies in a numer-

ical study. Furthermore, we investigate the influence of different setup time characteristics on the

performance of the policies. We consider three different policies which all have in common that

the global policy search sets the base stock levels and that production follows a fixed pre-defined

production cycle.

The paper is organized as follows: In Section 2 we introduce the problem and in Section 3

we first sketch the solution methodology and then the proposed manufacturing policies to be

parameterized by simulation optimization. Section 4 reports the results of a numerical study and

Section 5 summarizes the main findings and future research opportunities.

2. Model

We consider the continuous time stochastic economic lot scheduling problem with n∈ {1,2, ...,N}

products. There is a single machine that can only manufacture one product at a time. If the machine

state changes from one product to another, it has to be set up. This requires a deterministic,

sequence-dependent setup time snm to change over from product n to product m. We further

assume that the setup status is preserved over an idle period. The production for one unit of

product n requires a deterministic production time pn. During a setup or the production of a single
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item, interruption is not permitted. Inventories are subject to holding cost hn per item and unit

of time and cannot exceed a maximum inventory level ȳn. Demand for each product n follows a

compound renewal process with inter-arrival distribution FA
n and demand size distribution FD

n .

Inter-arrival times and demand size are independent for each product and across products. As in

Altiok and Shiue (1995) and Krieg and Kuhn (2002), we assume that unsatisfied customer demand

is lost at cost vn per item, but we allow for partial fulfillment of an order.

The problem can be modelled and for very small instances with few products be solved using

stochastic dynamic programming, see e.g. Graves (1980) or Löhndorf and Minner (2013).

While the model can be easily extended to handle setup cost in addition to setup times, in line

with Krieg and Kuhn (2002), we assume that setup cost are negligible, since “often no explicit

setup cost are incurreed, and the latter are used merely to represent opportunity cost of setup

times” (Federgruen and Katalan 1996).

3. Solution method

3.1. Global policy search

As in Löhndorf and Minner (2013), we propose to directly search for optimal parameters of simple

policies for production control. To guide the search for the optimal parameter vector, we use the

CMA-ES algorithm (Hansen and Ostermeier 2001). CMA-ES generates new candidate vectors

from a multivariate normal distribution, i.e., N
(
µx,diag(σx)

)
, which serves as an internal model

of promising search steps. Throughout the search process, the algorithm updates the distribution’s

means and covariances to increase the likelihood of previously successful search steps.

Figure 1 outlines a generic formulation of the CMA-ES algorithm. Denote π( · ;x) as control

policy which is characterized by a (continuous) parameter vector x, and denote SM as a sample

from the state transition function of the SELSP which, for a given state S and decision π(S;x),

returns a realization of the immediate cost c, the sojourn time τ and the successor state S′. The

objective of the algorithm is to search for an x that minimizes the expected average cost. The

algorithm is initialized with a guess of the best solution, µx, as well as a trust region, σx, in which
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(1) Input arguments: initial guess µx, trust region σx

(2) Do for i= 1,2, . . . , I

(2.1) Get (x1, ..., xK)←GM(K) from internal model

(2.2) Do for k= 1,2, . . . ,K

(2.2.1) Do for t= 1,2, . . . , T

(2.2.1.1) Compute
(
ct, τt, S

)
← SM

(
S,π(S;xk)

)
(2.2.2) Compute rk←

∑T

t=e+1 ct
(∑T

t=1 τt
)−1

(2.3) Update internal model UM
(
(x1, ..., xK), (r1, ..., rK)

)
(3) Return best solution x∗

Figure 1 Generic policy search for production control

the solution is likely to be found. The main loop consists of three steps: (2.1) generation of a

set of K candidate solutions (x1, ..., xK) from the internal model GM which controls the search

process; (2.2) simulating the transition process for T periods and recording the average cost for

each candidate policy; (2.3) updating the internal model using the sampled information.

3.2. Production policies

Denote Y = {Y1, ..., YN} as the set of base-stock levels and Q= {Q1, ...,QJ} ∈Q as the production

sequence of length J , where Q is defined as the power set of Q. For a given position j in sequence

Q and order-up-to levels Y , the production policy is given by

π(S;x) =

{
0 if yn = Yn ∀ n,
Qz(j) otherwise,

(1)

where the recursive function z is defined as

z(j) =

{
j if yk <Yk : k=Qj,

z
(
j mod J + 1

)
otherwise.

(2)

For a given position j, the function returns the next position in the sequence for which yn < Yn,

where the modulus ensures that the production cycle is repeated as soon as j = J .

In contrast to Löhndorf and Minner (2013), sequence-dependent setup times have to be taken

into account when constructing a production sequence from policy parameters. We therefore apply

an iterative two-step procedure which combines a heuristic (local) search with the global policy

search to jointly optimize base-stock levels, as well as the production sequence.
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3.2.1. Common cycle policy (CCP) The most simple production policy with a fixed pro-

duction sequence is the common cycle policy, where each product is produced exactly once during

a cycle. The optimal production sequence is set in advance by finding the sequence with the min-

imum total setup time. Since the production sequence remains constant, the global policy search

merely has to set the base-stock levels. To find a production sequence which minimizes the total

setup time, we resort to the Lin-Kernighan heuristic (LKH) as described in Helsgaun (2000). We

have to transform the setup matrix into a distance matrix with duplicate entries, because the

corresponding TSP is asymmetric (Jonker and Volgenant 1983).

The real-valued vector x∈RN can be transformed into integer base-stock levels by setting Yn =

|xn|. Note that the production cycle Q= {Q1, ...,QN} remains constant throughout the search, so

that the global search only has to search for N policy parameters.

As in Löhndorf and Minner (2013), we propose to use a heuristic solution as initial guess based

on the common cycle solution to the ELSP. Denote k as a safety factor and T̂ as the common cycle

time. Then, we obtain an initial policy by setting

Yn = max
{⌊
µnT̂ + kσn

√
T̂
⌋
,1
}

(3)

where µn denotes the mean demand per unit of time and σn the respective standard deviation. Note

that Yn ≥ 1 is a lower bound on the order-up-to level, since production would be zero otherwise.

The common cycle time T̂ and the safety factor k are set to

T̂ =

∑N

m=1

∑N

n=1:n 6=m snm

1−
∑N

n=1 µnpn
, k= Φ−1

(
vn

vn +hnT̂

)
, (4)

with Φ−1 as inverse standard normal distribution. As trust region, we use σx
i = max

{
1
2
µx
i , δ
}

for

all policies, with δ≥ 1 to ensure exploration in case µx
i = 0.

3.2.2. Fixed-cycle policy (FCP) The common cycle policy works well with homogeneous

products. However, if some products have a higher demand than others, many unnecessary setups

will be done for products with low demand, and high demand products are forced to build excessive

stocks. It may therefore be better to insert setups for high-demand products into the cycle more



Sequence-dependent SELSP 7

often. The resulting fixed-cycle policy (FCP) follows an idea originally proposed by Dobson (1987)

for the ELSP and adapted by Federgruen and Katalan (1998) for the SELSP. The idea is to first

compute the optimal production frequency for each product and then use this information to

construct a production sequence.

In addition to setting Y ∈NN as the set of order-up-to levels, we need a set of integer frequencies

R ∈NN from which a sequence can be constructed. The corresponding continuous parameter vector

x∈R2N can be transformed by setting Yn = |xn| and Rn = b|xN+n|c+ 1.

Löhndorf and Minner (2013) propose a heuristic method to generate an evenly spaced produc-

tion sequence from given integer frequencies. However, we have to consider that setup times are

sequence-dependent and simply distributing products evenly according to their frequencies may

lead to high setup times. Instead, we use the Lin-Kernighan heuristic to find a production sequence

which minimizes the total setup time. For FCP, however, the LKH has to be executed during the

global search, which means that the heuristic is called for each candidate parameter vector x.

As an initial guess, we use the same heuristic solution as for the common cycle policy, except

that we additionally set Rn = 1. To avoid the scheduling of identical products in sequence, we set

snn =∞ ∀ n.

3.2.3. Balanced cycle policy (BCP) A problem with the fixed cycle policy is that it

may still produce sequences with very irregular production patterns, simply because change-overs

between some products are cheap, so that some products are being set up back and forth while

others are not being set up at all. This again may lead to high inventory levels if products are not

built frequently.

A solution to this dilemma is to introduce another optimization criterion that strikes for a balance

between minimizing setup times and having a sequence with a regular production pattern. Let us

define inter-setup variability as the standard deviation of the index difference between two setups of

the same product in a given production sequence. For example, given a sequence Q= {1,2,1,3,2},

the index differences for product 1 are 3− 1 = 2 and 5− 3 + 1 = 3, so that product 1 first has to

wait for two and later three setups until being scheduled for production again.
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Formally, we determine inter-setup variability as follows. Denote Vn as the set of positions in the

sequence where product n is being produced,

Vn = {j :Qj = n}. (5)

The difference δnk between the position of the k-th setup of product n and the k− 1-th setup is

given by

δnk =

{
Vnk−Vn,k−1 if k > 2

J −Vn,Rn +Vn,1 if k= 1 .
(6)

The inter-setup variability of product n is given by the standard deviation of index difference, σQ
n ,

which is given by

σQ
n =

√√√√ 1

Rn

Rn∑
k=1

(
δnk−µQ

n

)2
, µQ

n =
1

Rn

Rn∑
k=1

δnk, (7)

with µQ
n being as mean index difference

In contrast to the fixed-cycle policy, the balanced-cycle policy requires a multi-criteria objective

function that strikes a balance between inter-setup variability and total setup times. Since total

setup time and inter-setup variability have two completely different units of measurement, the

objective function uses a weighted average of the two criteria. Denote α ∈ [0,1] as the weight of

total setup times. Then, the multi-criteria objective function f :Q 7→R that maps the production

sequence Q to a real number is given by

f(Q) = α

(
J∑

j=1

sQj ,Qj+1
+ sQJ ,Q1

)
+ (1−α)

N∑
n=1

σQ
n . (8)

To avoid having to hand-tune the weighting, we decode α as part of the parameter vector x so that

α becomes a policy parameter which is being selected during the global search. The corresponding

vector x ∈ R2N+1 is transformed into policy parameters by setting Yn = |xn|, Rn = b|xN+n|c+ 1,

and α= min(max(x2N+1,0),1).

Since the implementation of the LKH does not provide an interface for a custom objective

function, we use a modified 2-opt heuristic to search for an optimal production sequence (see

Figure 2). As input, the algorithm receives an initial production sequence, e.g., the nearest neighbor
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(1) Input arguments: initial sequence Q, objective function f :Q 7→R
(2) While Q′ = ∅ or f(Q′)< f(Q)

(2.1) Q′←Q

(2.2) For i= 1 to J − 1 do

(2.2.1) For j = J to i+ 1, j 6= i do

(2.2.1.1) Q′′← q(Q′, i, j)

(2.2.1.2) If f(Q′′)< f(Q′) then Q′←Q′′

(2.3) If f(Q′)< f(Q) then Q←Q′

(3) Return Q

Figure 2 Modified 2-opt heuristic for balanced production cycles

solution, as well as function f to compare two sequences. A 2-opt move exchanges successor and

predecessor of two non-adjacent products, which requires a rearrangement of the sequence of all

intermediate products.

Define m :N 7→ {1, . . . , J} as a function that maps an integer in N to an integer in {1, . . . , J}],

m(i, J) =


m(J + i) if i≤ 0,

m(i−J) if i > J,

i otherwise.

(9)

For any number larger than J , the function is equivalent to the modulus operator, but additionally

accounts for negative integers. We can now use this function to rearrange the indices of a production

sequence as follows: q :Q×{1, . . . , J}×{1, . . . , J} 7→Q as a function that returns a permutation of

the given sequence Q for given i, j,

q(Q, i, j) =

{
Q′ ∈Q :Q′i+k =Qj−k ∀ 0≤ k≤ j− i if i < j,

Q′ ∈Q :Q′m(i−k) =Qm(j+k) ∀ 0≤ k < J − i+ j+ 1 if i > j.
(10)

The edges connecting (i, i+ 1) with (j − 1, j) are exchanged such that the production sequence

between i and j is reversed. If i > j, the function m ensures that any k greater than J is being

mapped to the lower end of Q.

The balanced-cycle policy executes the modified 2-opt heuristic for a given parameter vector

x to find a production sequence that strikes a balance between total setup times and inter-setup

variability. In this way, the global search treats α as decision variable while the local search treats

it as a parameter. Depending on the choice of α, the local search will obtain a different ranking of
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production sequences which affects the search for an optimal sequence. Since the sequence has an

immediate effect on total cost, the global search can decrease total cost by controlling α, thereby

guiding the local search to find a production sequence that trades off total setup times and inter-

setup variability in the chosen manner.

For an initial guess for the global search, we can use the same heuristic solution as for the

fixed cycle policy. In addition, we initialize the criteria weights by setting α = µx
2N+1 = 0.5 and

σx
2N+1 = 0.25. Although we found that the global search is quite robust towards the choice of

the initial guess, these parameters ensure that the full range of weights is contained within the

95-percent confidence interval of the marginal distribution of candidate solutions.

4. Results

4.1. Experimental Design

To test the performance of the proposed policies, we generated instances of model parameters

which are maximally different and cover a large range of values. To create an instance of the

SD-SELSP, we have to specify six model parameters for each of the N products: mean demand

per period, variance, lost sales cost, holding cost, sequence-dependent setup times, and production

time. As in Löhndorf and Minner (2013), we aggregate these parameters by a number of design

choices. We first fix the average demand and lost sales cost across all products and then express the

remaining model parameters through their ratios; the variance by the coefficient of variation (CV

Demand); the production time through the workload that would result from producing N products

with identical demand and production rates (Load Factor); the holding cost through the ratio of

holding to lost sales cost (Holding/LS Cost); the average setup time from the ratio of setup to

production time (Setup/Prod Time); the product-specific setup time through a measure of setup

time diversity, as well as asymmetry of the setup matrix. The ranges of the design parameters are

given in Table 1.

Since the set of aggregate model parameters merely defines the averages over N product-specific

parameters, we additionally define a design parameter that specifies model parameter heterogeneity
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Design Parameter Unit Min. Value Max. Value

Avg Mean Demand piece 5 5
Avg Lost Sales Cost currency 100 100
Avg Holding/LS Cost % 0.001 0.1
Avg Setup/Prod Time % 1 50
Avg CV Demand % 0.5 1.5
Avg Load Factor % 0.3 0.9
Setup Matrix Diversity % 0.25 0.75
Setup Matrix Asymmetry % 0 2
Heterogeneity % 1 50

Table 1 Intervals of design parameters used in the experiment

across all products. The heterogeneity is given by the ratio of the largest over the smallest value in a

set of model parameters. Additionally, we require all other values to be equidistant to one another.

For example, if the average coefficient of variation (Avg CV Demand) is 0.5 and the heterogeneity

factor is 9, then, the largest CV has to be nine times larger then the smallest CV, e.g., for five

products, any permutation of the set {0.1,0.5,0.7,0.3,0.9} would satisfy this requirement. To avoid

that parameters of different sets are correlated, we apply a simple shuffle algorithm to each of the

parameter sets.

Based on this experimental setup, a problem instance is given by a seven-dimensional design

point. As in Löhndorf and Minner (2013), we generated 1,000 design points for problems with N ∈

{10,20,30} products by sampling a seven-dimensional Sobol sequence. A Sobol sequence returns a

sequence of vectors with elements in [0,1] which are more evenly distributed over the unit hypercube

than a sequence of vectors of pseudo-random numbers. This property turns Sobol sequences into a

useful method to generate experimental designs with good space-filling properties, so that design

points lie not only at the edges of the hypercube that spans the experimental area but also at its

interior (Chen et al. 2006).

The novelty of this numerical study over the study presented in Löhndorf and Minner (2013)

is the introduction of two properties that describe the sequence-dependency inherent in the setup

matrix.

The first property setup diversity measures the deviation of setup times depending on the previ-

ously produced product. Setup diversity is defined as the percentage of the maximally achievable
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mean absolute deviation (MAD) for a given average setup time s̄m,

MAD1(s̄m) =
|Ns̄m− s̄m|+ (N − 1)|0− s̄m|

N
=

2(N − 1)

N
s̄m. (11)

This definition allows us to control setup diversity by setting the MAD of each column equal to

the product of MAD1(s̄m) and a diversity factor. For example, if d̄ is zero, all rows of the setup

matrix are identical, i.e., snm is the same for all n for a given product m. If d̄ is equal to one, the

setup matrix is sparse, since each column has only a single element greater than zero.

The second property matrix asymmetry determines the difference between setup times when

setting up from n to m as opposed to setting up from m to n. To control matrix asymmetry, we

introduce an asymmetry factor ā which is defined as a multiplier of the MAD of all combinations

of snm and smn, i.e.,

2

N(N − 1)

N∑
n=1

N∑
m=n+1

|snm− smn|. (12)

Since this MAD also depends on the difference in average setup times, we have to control the MAD

resulting from product heterogeneity in general. We can compute this value by deriving the MAD

for the problem where setup times are not sequence-dependent, i.e.,

MAD2(s̄1, ..., s̄N) =
2

N(N − 1)

N∑
n=1

N∑
m=n+1

|s̄n− s̄m|. (13)

Matrix asymmetry can now be controlled by setting the MAD of each column equal to the product

of MAD2(s̄1, ..., s̄N) and an asymmetry factor. If ā is zero, the matrix is perfectly symmetric, i.e.,

snm = smn∀ n,m. If ā is two, matrix asymmetry is twice as high as it would be for the sequence

independent case.

A problem arises from the fact that for some combinations of ā, d̄, and s̄m there exists no setup

matrix with the desired properties. Instead of defining a feasible set for ā, d̄, and s̄m, we formulate a

mathematical optimization problem with the objective of finding a matrix with minimum deviation

from the given properties.

min
N∑

n=1

u2
n + v2 (14)
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s.t.
1

N − 1

N∑
n=1:n 6=m

snm = s̄m ∀ m∈ {1, ...,N}, (15)

ynm ≥ snm− s̄m, ynm ≥ s̄m− snm ∀ n,m∈ {1, ...,N} : n 6=m (16)

1

N − 1

N∑
n=1:n 6=m

ynm−um = d̄MAD1(s̄m) ∀ m∈ {1, ...,N}, (17)

xnm ≥ snm− smn, xnm ≥ smn− snm ∀ n,m∈ {1, ...,N} :m>n (18)

2

N(N − 1)

N∑
n=1

N∑
m=n+1

xnm− v= āMAD2(s̄1, ..., s̄N), (19)

snm ≤ snk + skm ∀ n,m,k ∈ {1, ...,N} : n 6= k 6=m (20)

snm, ynm ≥ 0, xnm ≥ 0, un ≥ 0, v≥ 0, snn =∞. (21)

Constraints (16) and (18) are used to obtain absolute values x and y defined in (11) and (13). The

absolute values are tight from below but not from above, so that the true value can be smaller

but never larger. Variables u and v are slack variables if constraints (17) and (19) do not hold as

equalities, in which case their deviation from equality is penalized quadratically. Constraint (20)

enforces the triangular inequality so that the setup time cannot be shortened by first setting up to

another product.

Note that we can only penalize a positive, but not a negative deviation without using a mixed-

integer formulation. For small values of MAD1 and MAD2, the formulation is therefore more likely

to produce a setup matrix with the best fit. For high values of MAD1 and MAD2, on the other hand,

constraints (16) and (18) may not be binding, in which case u and v are zero. While a mixed-integer

formulation may overcome this drawback, the corresponding formulation is computationally more

complex and not suited for generating thousands of setup time matrices.

The transition model SM(·), as well as the search algorithms and the different policies CCP,

FCP, and BCP, have been implemented in Java. As compound renewable process, we simulated a

stuttering Poisson process to generate stochastic demands. For further details, we refer to Löhndorf

and Minner (2013). For all test runs we allowed the CMA-ES optimizer to generate 10,000 candidate

vectors and simulate the resulting average cost.
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4.2. Numerical Results

4.2.1. Influence of model parameters on average cost. To study the influence of the

design parameters on the expected average cost, we conducted an analysis of variance (ANOVA).

Since the experimental design is orthogonal, the percentage of variance in cost per product that

can be explained by a design parameter is measured by the coefficient of determination (r2). Since

the total mean demand increases in the number of products and thereby the expected average cost,

we use average cost per product as performance measure.

We ran separate ANOVAs on the results of all three policies, CCP, FCP, and BCP. Since we

were also interested in the difference between the local search heuristics, we additionally used 2-opt

in combination with CCP and FCP. The results are shown in Table 2.

CCP/2-opt CCP/LKH FCP/2-opt FCP/LKH BCP/2-opt

Factor r2 F r2 F r2 F r2 F r2 F

Number of Products 0 1.31 0 10.53 0 0.21 0 0.24 0 11.73
Avg Holding/LS Cost 0.33 3098.14 0.34 3067.92 0.3 3217.15 0.3 3143.06 0.36 4288.98
Avg Setup/Prod Time 0.19 1947.41 0.19 1822.36 0.2 2300.08 0.2 2213.05 0.2 2558.56
Avg CV Demand 0.02 202.41 0.02 201.87 0.01 111.08 0.01 111.02 0.04 538.28
Avg Load Factor 0.1 1258.15 0.09 1167.37 0.15 2095.99 0.15 2027.55 0.1 1775.31
Setup Diversity 0 0.62 0 0.57 0 1.03 0 7.22 0 0.02
Asymmetry Factor 0 3.53 0 0.01 0 1.32 0 0.35 0 32.64
Heterogenity Factor 0 20.31 0 25.18 0 22.25 0 35.54 0 4.22

Linear Model 0.69 933 0.69 899 0.73 1107 0.72 729 0.77 1316

Sample Size = 2808 x 3 policies, r2 = coefficient of determination.

Table 2 ANOVA of the influence of design parameters on cost per product for different policies

As we can see from the last row (Linear Model), all factors together explain 69 to 77 percent

of the variance in cost per product, irrespective of the policy group. Avg Holding/LS Cost, Avg

Setup/Prod Time and Avg Load Factor have the highest influence on average cost per product.

While a large Avg Holding/LS Cost only leads to an increase of holding cost, larger values of Avg

Setup/Prod Time and Avg Load Factor lead to a higher utilization which either results in higher

safety stocks or a higher number of stock-outs. The number of products does not have an influence
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on average costs, which implies that the performance of the solution methods remains stable for

the selected problem sizes.

Neither setup matrix diversity nor matrix asymmetry have a significant effect on the average

cost of an optimized solution, which indicates that all policies are capable of compensating the

effect of sequence-dependence.

4.2.2. Policy evaluation. For all policies, we recorded the mean cost per product for models

with 10, 20, and 30 products, as well as low and high levels of setup time diversity and setup matrix

asymmetry, using the median to split the sample. Additionally, we studied the case where setup

matrix diversity was zero, in which case setup times are sequence-independent. For each instance,

we divide the average cost obtained by a given policy by the average cost across all instances and

all policies, which gives us the standardized cost per product.

We investigated whether a better production sequence translates into lower average cost. In

Table 3, the LKH-variants of our CCP- and FCP policies clearly outperform the 2-opt variants

in both cases. While CCP/2-opt only chose the best policy in about 4% of the observed cases,

CCP/LKH performed best in around 10% of the test instances. Its average standardized cost is

also 5% lower. Even if the CCP/LKH policy did not find the best policy, it was not as far off as

CCP/2-opt. We observe similar results for the fixed cycle variants. The performance increase when

using LKH over 2-opt indicates that minimizing the total setup time gets more important as the

sequence-dependence of the problem increases.

We also compared the difference between common- and fixed-cycle variants. Although we

expected fixed-cycle policies to outperform their common-cycle counterpart, the difference in aver-

age cost was in general not significant. This implies that an increase in setup frequency for some

products does not necessarily lead to a decrease in average cost as long as the corresponding pro-

duction sequence merely minimizes total setup times. In that case, due to the lower dimensionality

of the search space, the common cycle policy may even become the more robust choice.

The most important result of our study is the performance increase when we include inter-setup

variability as an additional optimality criterion into the search for a good production sequence. The
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CCP/2-opt CCP/LKH FCP/2-opt FCP/LKH BCP/2-opt

Prod Div Asym Mean Frq Mean Frq Mean Frq Mean Frq Mean Frq

10

zero all 1.41 3% 1.42 9% 1.47 5% 1.46 10% 1.29 74%

low
low 1.01 3% 1.00 2% 0.95 7% 0.95 6% 0.75 82%
high 1.03 2% 1.00 16% 0.97 8% 0.96 18% 0.80 56%

high
low 1.15 2% 1.10 6% 1.11 9% 1.12 4% 0.72 78%
high 1.07 3% 1.08 6% 1.04 5% 0.99 15% 0.76 71%

20
low

low 1.05 2% 1.02 2% 1.02 3% 0.99 7% 0.76 87%
high 1.06 3% 0.98 15% 1.05 3% 1.02 20% 0.82 58%

high
low 1.06 5% 1.05 5% 1.05 5% 1.05 4% 0.77 81%
high 1.09 6% 1.04 19% 1.09 2% 1.03 18% 0.84 55%

30
low

low 1.08 4% 1.06 4% 1.05 3% 1.06 4% 0.82 85%
high 1.11 2% 1.02 8% 1.07 1% 1.04 10% 0.80 78%

high
low 1.15 1% 1.09 6% 1.11 6% 1.11 3% 0.79 85%
high 1.12 2% 1.03 18% 1.12 2% 1.10 7% 0.82 70%

Total 1.08 3% 1.04 9% 1.05 5% 1.03 10% 0.79 74%

Prod = number of products, Div = setup matrix diversity, Asym = setup marix asym-

metry, Mean = standardized, mean cost per product, Frq = frequency of policy being

best in class.

Table 3 Policy comparison for different setup matrix configurations

last two columns in Table 3 show the results for the balanced cycle policy. We find that on the whole,

this policy performed best in 73% of all test instances. In all other cases, it was on average only

3% off. This is despite the fact that it uses the inferior 2-opt algorithm for sequence optimization.

The result demonstrates that merely solving a TSP to find an optimal production sequence is often

insufficient. Instead, a good production sequence strikes a balance between minimum total setup

times and evenly distributed setups.

We also find that policy performance remains relatively stable across different parameter con-

figurations, with setup matrix diversity and setup matrix asymmetry having no significant effect

on the policy ranking. For the special case, where setup matrix diversity is zero, we can observe a

sharp overall cost increase, which is due to the fact that there simply exists no way to decrease total

setup times by finding a better cycle which directly affects system utilization und thereby cost.

The existence (or non-existence) of diversity, however, does not yield into different conclusions,

but rather emphasizes the additional complexity and challenge and therefore the need for methods
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that explicitly take diversity and asymmetry into account.

4.2.3. Computation times. Computation times depend on the used policy as well as prob-

lem size, as can be seen from Table 4. The common-cycle policies were fastest, since the production

sequence can be computed in advance. The fixed-cycle policies, on the other hand, search for a

new production sequence at each step of the global search, which evidently slowed them down.

Although we used a state-of-the art C implementation of the LKH and exchanged all problem

information in-memory, the simple 2-opt algorithm was an order of magnitude faster than the LKH.

The balanced-cycle policy was also slower than the fixed-cycle policy using 2-opt, because it tends

to produce much longer sequences, but it was still around one third faster than the fixed-cycle

policy using LKH.

Products CCP/2-opt CCP/LKH FCP/2-opt FCP/LKH BCP/2-opt

10 00:11:13 00:11:09 00:12:03 01:45:19 01:40:28
20 00:17:50 00:17:43 00:23:16 07:34:09 06:08:10
30 00:24:12 00:24:01 00:47:32 22:02:59 16:17:53

Total 00:17:45 00:17:38 00:27:17 10:27:29 08:02:10

Table 4 Mean computation time per problem instance in hours, minutes and seconds.

5. Conclusion

We introduced sequence-dependent setup times into the SELSP and compared different production

policies using simulation optimization. We find that a schedule with balanced setups outperforms

other fixed-cycle policies. The determination of a good production sequence, which is the innovation

of this manuscript, turns out to deliver reasonable average cost results so that the parameter values

of setup time heterogeneity do not have a major impact on total cost.

For future research, we expect that more elaborate local search algorithms for the subproblems

will yield further cost improvements. Another promising extension of the problem will be to consider

multi-stage manufacturing systems and parallel machines. Additionally, an investigation of the

benefits of using a stochastic model rather than a deterministic problem with expected values of

demand parameters is a promising venue for further numerical studies.
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