Eric von Hippel and Nikolaus Franke and Reinhard Wilhelm Prügl

Pyramiding: Efficient search for rare subjects

Article (Accepted for Publication)

Original Citation:

This version is available at: http://epub.wu.ac.at/3092/
Available in ePubWU: May 2011

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates referee comments. There are minor differences between this and the publisher version which could however affect a citation.
Pyramiding: Efficient search for rare subjects

Eric von Hippel*, Nikolaus Franke**, and Reinhard Prügl***

A later version of this paper is published in Research Policy, Vol. 38 (2009), 1397-1406.

* MIT Sloan School of Management, Cambridge, MA, USA: evhippel@mit.edu

** WU Wien (Vienna University of Economics and Business), Institute for Entrepreneurship and Innovation (www.e-and-i.org), Vienna User Innovation Research Initiative (www.userinnovation.at), Austria: nikolaus.franke@wu.ac.at

*** Zeppelin University Friedrichshafen, Chair of Innovation, Technology and Entrepreneurship, Germany and Innsbruck University School of Management, Department of Strategic Management, Marketing, and Tourism, Austria: reinhard.pruegl@zeppelin-university.de

ABSTRACT

The need to economically identify rare subjects within large, poorly-mapped search spaces is a frequently-encountered problem for social scientists and managers. It is notoriously difficult, for example, to identify “the best new CEO for our company,” or the “best three lead users to participate in our product development project.” Mass screening of entire populations or samples becomes steadily more expensive as the number of acceptable solutions within the search space becomes rarer.

The search strategy of “pyramiding” is a potential solution to this problem under many conditions. Pyramiding is a search process based upon the idea that people with a strong interest in a topic or field tend to know people more expert than themselves. In this paper we report upon four experiments empirically exploring the efficiency of pyramiding searches relative to mass screening. We find that pyramiding on average identified the most expert individual in a group on a specific topic with only 28.4% of the group interviewed – a great efficiency gain relative to mass screening. Further, pyramiding identified one of the top 3 experts in a population after interviewing only
15.9% of the group on average. We discuss conditions under which the pyramiding search method is likely to be efficient relative to screening.

1 Introduction and overview

Identification of subjects with rare attributes within large, poorly-mapped search spaces is a frequently-encountered task in social science research. Mass screening, a common search approach, involves collecting information from every member of a population or sample to identify the subset with desired attributes. Clearly, as individuals with the desired attributes become rarer in a population, the number of people who must be screened to attain each “hit” increases, and screening becomes an increasingly inefficient mode of data collection. As Sudman puts it: “If the [desired] population is rare or very rare, screening costs may be very large and account for the major share of data collection costs” (1985, p. 20). Under such conditions, a more efficient method would clearly be beneficial.

One method to efficiently identify people who have a rare attribute in common is “snowball sampling” (Goodman 1961). Snowball sampling involves asking individuals who have a rare characteristic being sought to identify others they may know who have that same characteristic (Welch 1975). The utility of snowballing stems from the observation that people tend to know or be aware of people like themselves.

Pyramiding search is a variant of snowballing – but with an important difference. Pyramiding requires that people having a strong interest in a given attribute or quality, for example a particular type of expertise, will tend to know of people who know more about and/or have more of that attribute than they themselves do (von Hippel et al 1999). For example, if an individual is an expert heart surgeon, pyramiding search assumes that that individual will know of others who are still more expert in that field. Similarly, if a person is an avid collector of jazz CDs, pyramiding assumes that person is likely to be able to identify people with still larger collections of jazz CDs.

Pyramiding is useful when a researcher wants to efficiently identify the persons with high levels of a given attribute in a population or sample – generally individuals near or at “the top of the pyramid” with respect to that attribute. The pyramiding search process is quite simple in concept: one simply asks an individual to identify one or more others who she thinks has higher levels than she does of the sought-after attribute – or better information regarding who such people might be. The researcher then asks the same question of the persons so identified, and continues the process until individuals with the desired high levels of the attribute have been identified.

Pyramiding has already proven its usefulness in studies seeking lead users within a population of product users. Lead users are defined as having high levels of two attributes relative to the
population average: They are (1) at the leading edge of an important market trend and (2) they have a high need for solutions to the novel needs they have encountered at that leading edge. Early studies seeking lead users used a mass screening method. However, lead users are relatively rare in a population, and so screening can be quite inefficient. For example, Lüthje (2000) reported screening 2,043 persons to identify 22 lead users in a lead user study – a sampling efficiency of only 1.1%. Eager to avoid low efficiencies such as these, researchers conducting lead user studies have increasingly turned to the pyramiding search method to achieve more efficient identification of lead users (e.g. von Hippel et al. 1999, Olson and Bakke 2001; Lilien et al. 2002).

Even though researchers seeking efficiency in finding rare subjects increasingly turn to pyramiding, the actual efficiency of pyramiding efficiency vs. mass screening has never been empirically tested. Clearly, it is important to do this if pyramiding is to become a well-understood part of researchers’ toolkits – and so in this paper we begin that work. We proceed as follows. In section 2, we further explain pyramiding and mass screening search methods, and report upon an informal pilot study comparing the two methods. In section 3 we review related literature. In section 4 we report upon our study of 663 pyramiding search chains in 18 search settings and compare the efficiency of these with mass screening methods applied to the same settings. In section 5 we discuss our findings, and discuss the real-world conditions under which pyramiding is likely to be a more efficient search method than mass screening.

2 Pyramiding vs. Screening Searches

2.1 Background on pyramiding and screening

Pyramiding search, as was mentioned earlier, is a variant of “snowball sampling” (Goodman 1961, Welch 1975). Snowballing assumes that people in any population will tend to personally know others similar to themselves. The snowballing method therefore begins with a few people in a population known to have a given rare attribute, and asks these people to identity others that have that same rare attribute. Pyramiding, unlike snowballing, enables searchers to “move up the pyramid” – to find people with more of a given attribute – rather than staying at the same level (von Hippel et al 1999).

Pyramiding (and snowballing) differs from mass screening in that it applies a questionnaire to a group of people in series - in essence it is an experimental protocol involving x experiments conducted in series. Mass screening, in contrast, is an experimental protocol involving n experiments conducted in parallel. In the case of experiments conducted in series, it is possible for a researcher to incorporate learning acquired from previous experiments into each succeeding
Pyramiding applies its series of experiments to conduct “hill-climbing” - a serial search for a solution where learning from each experiment is incorporated into the next in the series (Thomke et al. 1998). In a standard hill-climbing method, an experimenter moves across a landscape in which desired solutions can be found at the tops of ‘hills’ on that landscape: the higher the hill, the better the solution found at the top. The experimenter takes one step at a time, with each step representing an experiment. After each step, the experimenter learns from that experiment by determining which of his ‘feet’ is at a higher point on the landscape. This learning is incorporated into the next experiment in that the experimenter turns towards the higher foot before taking the next step. A hill-climbing strategy enables an experimenter to travel to the highest point that can be reached by a continuously ascending path in the topography encountered (Rivkin and Siggelkow 2002, Siggelkow and Rivkin 2005, 2006). A well-known disadvantage of the hill-climbing strategy is that the researcher will not know whether the highest point reached is in fact the highest peak on the landscape or simply a foothill.

Although the search strategy of “pyramiding” involves the hill-climbing metaphor as just described, in the case of pyramiding each location on the hill reached by the researcher is not just a physical point in the landscape, but an intelligent actor (e.g. a person or an organisation) having some level of knowledge about the surrounding terrain. After taking each step, therefore, the researcher can discuss the desired goal with the person encountered at that spot. The person may then be able to respond with very useful information about the terrain, such as: “I know that X innovation or innovator is at the top of this hill – jump directly there.” Or, “Now that you have told me about the type of solution you are seeking, I can tell you that you are not on the best hill – there is a higher hill worth climbing over there” (figure 1).

In many common market research applications, protocols involving parallel experimentation are appropriate because learning between trials is not useful and only costs time. For example, parallel experimentation is appropriate to determine the distribution and intensity of average characteristics or information in a specified group – typically a target market. “We want to know how many people in this target market are aware of our brand, how high their brand attachment is, and how they would react to a brand extension.” To answer such questions, there is no benefit from learning
what individual A thinks prior to collecting information from individual B. In contrast, when searching for persons with rare levels of high expertise in a population – our case – a serial experimental protocol may be more appropriate than a parallel one. In this case applying what is learned in one “trial” to the next may be very useful because individual A may well have information that can guide researchers very quickly to the rare expert being sought.

2.2 An informal pilot exploration of the efficiency of pyramiding vs. screening searches

IDC is a firm specializing in collecting and disseminating information about information companies and markets. A project carried out at IDC was used by one of the authors as an opportunity to compare the effectiveness of the two search techniques of screening and pyramiding in the identification of lead users. The goal of the IDC project was to identify users at the leading edge of six trends previously identified by IDC as important to the evolution of Internet and Intranet websites. Approximately 12 lead users were required, two at the leading edge of each of the six trends. Once identified, these 12 individuals were to be invited to a lead user workshop sponsored by IDC to discuss new technical advances occurring or likely to occur in the website field.

Identification of these lead users promised to be a difficult task. No public data was available on corporate website performance parameters. Nor was there any data available on the presence or absence of innovative work by those managing corporate sites. In addition, of course, individuals with appropriate lead user and presenter characteristics were likely to be rare. Compounding the difficulty, a date for the workshop had been set and publicized which allowed very little time to identify and recruit the lead users needed as participants. Given this situation, a senior manager at IDC, John Gantz, decided it would be prudent to conduct two parallel recruitment efforts – one using IDC’s standard screener methodology, and one using the pyramiding method. Both recruitment efforts were managed and partly staffed by a skilled project team of four IDC professionals.

For the purposes of this pilot study, lead users were defined as individuals who (1) were directly involved with a corporate website that was at the leading edge of one or more of the six important trends in the website field (such as the “hit rate” a website was experiencing) and (2) had a strong incentive to improve website performance in that dimension, as evidenced by their personal record of innovation (such as writing novel computer code to improve the performance of their site in that dimension). An additional requirement placed on the lead users who would ultimately be selected as workshop participants was that those recruited should be “likely to be interesting presenters and discussion partners” – a matter to be assessed by telephone discussions between an IDC project team member and each potential recruit.
Screening method (parallel search). The total US population of webmasters was probably somewhere around 100,000 at the time of the pilot study. The starting population for the IDC screening procedure was 2,000 names of webmasters assembled from three sources. Two were published lists of webmasters, and the third was a list of 100 names of especially well-qualified webmasters that had been compiled by a project team member during a prior research project on the Internet. A screening questionnaire was created by the IDC project team to collect preliminary information as to whether a webmaster contact was possibly a lead user. This questionnaire was to be administered by employees of an outside market research firm during 15-minute telephone interviews with the individuals on the list. Respondents who answered in ways that indicated they might be lead users were then to be contacted and interviewed further by an IDC project team member so that a final determination could be made.

Four hundred 15-minute screener interviews were carried out by the outside market research firm before the screener process was stopped due to the greater success of the pyramiding method. The 400 screener interviews yielded 25 likely lead users who were interviewed further by IDC project team members. Three of these 25 interviewees were found to be actual lead users and were selected for participation in the IDC Lead User workshop. (One of the three was also independently identified by the pyramiding method.) John Gantz computed the costs to IDC of the screener-based recruitment effort from its start to its early termination and came to a figure of $29,300. The cost of the screener method per lead user identified was thus $9,767.

Pyramiding method (sequential search). The starting population for the pyramiding search method was the initial IDC list of 100 webmasters mentioned previously, plus 50 to 100 personal webmaster contacts known to IDC project team members. The initial IDC project team review and discussion of these potential interviewees resulted in the selection of two dozen or so as people likely to have a high level of expertise and so likely to be useful starting points for the pyramiding method. Pyramiding interviews were then carried out by IDC team members. Approximately 80 to 100 phone interviews were conducted, and eight lead users were found who were qualified for participation in the IDC lead user workshop. Two of these were among the initial starting points selected by the team for the pyramiding process; two were second node contacts (Fedex, Citibank); and four were third node contacts (Sandia Labs, Virtual Vineyards, Time Warner, US West). The cost of the pyramiding search process to IDC was calculated by Gantz to be $12,000 in IDC personnel time. Thus, the cost per lead user identified via the pyramiding procedure in this real world case was $1,500 – 15% of the cost of the screener method.

3 Literature review
To the best of our knowledge, there is no prior work that compares the efficiency of pyramiding search methods relative to screening search methods. However, useful related work does exist, and we review this next.

Pyramiding involves traversing reputation networks, and the goal is to do this in an efficient way. The field of scholarship that sheds light on this type of endeavour is called network theory or graph theory (for a recent review, see Newman 2003). Networks consist of nodes (in our case a sample of people) and links between the nodes (in our case reputational information held at each node about other nodes). Network theory points out that the efficiency with which one can move from point A to desired point B will depend upon the structure of the network – the number and distribution of the links between nodes (e.g. Burt 1992, Strogatz 2001). For example, consider a “star” network. In this network structure, one node will be at the center and all other nodes will be linked to each other only via the central node – there are no direct links between peripheral members. In the case of a star network, one can immediately see that the number of links required to reach a desired peripheral member from any other peripheral member will always be two: a first step from any peripheral member to the central member who has information on all peripheral members, and then a second step to the desired member. In contrast consider a “chain” network in which all nodes are connected by a single chain of links. In that case, clearly, it will take as many steps as there are intervening nodes to move from a starting point to a desired end point on the chain.

The most efficient pathways through “pure types” of networks like a star network can be calculated. However, the most efficient pathway through real-world networks is much less predictable, because the shortest path from one point in a network to another can be drastically affected by the addition of even a single additional link. For example, one link added to directly connect two distant points in a chain network can clearly have a great impact on many “shortest paths” in that network. For this reason, experiments with real-world networks tend to require “try it and see” to determine the properties of a given network.

With respect to informant identification, the method most closely related to pyramiding searches is, as we mentioned earlier, snowball sampling or “snowballing” (Goodman 1961). Snowballing is occasionally used in marketing and other fields to assemble samples of individuals with characteristics which are relatively rare or hidden in a population (Spreen 1992). Among these are special populations such as the deprived, the socially stigmatized and the elite (Atkinson and Flint 2001). Thus, Burt (1982) used snowballing to identify experts in a specialized academic field in addition to those who had explicitly labeled themselves as belonging to that field and who had high reputation on a range of measures. These “non-labeled” people were identified by “labeled” experts
as fellow experts worthy of inclusion in their group. Snowballing is seen in market research as a way to obtain samples of special populations in an efficient manner (Sudman 1985).

Snowballing capitalizes primarily on the social connections of sample participants. Its efficiency depends upon the common observation that people tend to know or be aware of people who are like themselves. Sample identification proceeds by first finding one or a few individuals who have the rare characteristic. Then one asks these individuals to identify others they know who have that same characteristic (Welch 1975). In this way, the researcher creates a growing pool of contacts (Atkinson and Flint 2001). Researchers using snowballing must actively develop and control the initiation, progress and termination of the sample (Biernacki and Waldorf 1981). Welch (1975) provides some empirical evidence on the relative efficiency of snowballing versus screening.

The author tried to locate Mexican-American households in Omaha, Nebraska. This target group was thinly dispersed (8,000 households out of 400,000). A combination of screening and snowballing was used (households were randomly chosen until a Mexican-American household was found; the interviewed person was then asked for referrals). Over one third of the respondents provided referrals, with an average of two each (Welch 1975). Although only 54% of all households were screened, 77% of the targeted households were located through this combination of screening and snowballing. A comparison of the households located through screening (n=87) and snowballing (n=61) showed no significant differences in sample characteristics. The method used in this study was able to reduce the number of unproductive calls made by interviewers and therefore lowered the costs involved.

Another phenomenon related to pyramiding – but one that differs in crucial respects – is the “small world” procedure first proposed by Stanley Milgram in 1967. This procedure has been used to study acquaintanceship networks in a population. In small world studies, the underlying idea is that one can reach any person in a population (with the exception of totally isolated individuals or subgroups) by passing a message along acquaintanceship chains. Thus, in 1969, Travers and Milgram explored how many acquaintanceship links it would take to transmit a message from an arbitrary starting point to a known end point in a population. They defined an acquaintance as someone “personally known to you on a first-name basis.” They then asked study participants (for example, some individuals living in Nebraska) to try to transmit a letter to a specified “target” person at a specified address (which was in Boston) by mailing or delivering it to an acquaintance who they thought was most likely to know the target person. That message recipient was to take the same actions in turn, and the chain was to continue until the letter had been delivered to the target person via this “acquaintanceship chain”. Travers and Milgram (1969) found that 29% (64 out of 217 started) of the chains reached the target person, with successful chains requiring an average of approximately 5 acquaintanceship links to reach the goal.
Dodds, Muhamad and Watts (2003) conducted a large internet-based social search experiment in the Travers and Milgram style. Using 18 target persons from 13 countries, the authors recorded data on 61,168 individuals from 166 countries generating 24,163 acquaintanceship chains. They found a median of 5 to 7 steps to reach the target person. However, the completion rate was rather low – only 384 out of 24,163 chains reached the target (1.6%). Successful searches were enabled by weak ties and relied to a great extent on professional relationships. Those who forwarded the message were found to have chosen the next link in the message chain mostly on two criteria: geographical proximity to the target and similarity of occupation.

Small world networking methods differ from methods used in pyramiding in two important respects. First, messages in small world studies are intended to flow along acquaintanceship chains, where acquaintances are defined as personal relationships. In pyramiding, in contrast, participants in chains leading to the identification of experts are not required to be personally acquainted with the next link in a chain that they identify. Instead, it is useful to link also to those whom they only know by reputation. Abandoning the requirement for actual acquaintanceship can greatly increase the efficiency with which desired subjects can be identified via pyramiding. For example, essentially everyone in the heart transplant field can immediately identify the top practitioners in that field, even if only a few are personally acquainted with them. Kleinberg (2000) shows mathematically that individuals are able to find short chains in a large network based on local information.

Second, in small world studies each link in the chain must have the motivation as well as the information needed to forward a message along to the next link. In pyramiding search in contrast, contacts with each chain member are made by a researcher who has an independent motivation to pursue the chain to the end. The low chain completion rates found in small world studies are therefore not likely to be a problem in the case of pyramiding. A study by Guiot (1976) illustrates. He conducted a small world study in which he used a telephone procedure instead of mailing. Pursuing each identified link in a chain was entirely at the initiative of and under the control of the researcher, a situation very similar to the use of the pyramiding technique. A small pilot study (52 starting persons) yielded a completion rate of 85%. Dodds, Muhamad and Watts (2003) stress the importance of incentives for individuals to increase search success.

4 Method

Recall that our overall goal is to empirically compare the relative efficiency of pyramiding search and screening methods with respect to identifying the single individual in a group who has the “most” of a given attribute. In outline, our research method involved selecting 4 relatively small
populations of individuals (population sizes ranged from 33 to 41 individuals) for study. These populations were much smaller than typical survey populations in real-world screening or pyramiding search studies. We found this size restriction to be necessary due to our need to obtain data simultaneously from all members of each group.

Consider that, in order to calculate relative efficiencies of pyramiding search vs screening procedures, we needed two things. First, we needed to have all members of a group respond so that all possible pyramiding search chains would be represented. Second, we needed all population members to fill in a questionnaire about attribute levels of all people in the group before they had a chance to improve their information on this topic by talking with other group members. For these reasons, we could not do an Internet questionnaire or mail-in questionnaire with a large group. Inevitably, some members would not respond. Also inevitably, some members of the group would “chat” with each other about the topic before responding, and thereby destroy the experiment. The solution we came up with was to get a complete (and so a relatively small) group into a room together and ask them to answer the questionnaire “on the spot,” and without discussing their answers with others.

Within each population studied we collected two types of information from every person in the group: (1) the individual’s actual level of the attribute being asked about and; (2) the identity of another person within the group which each subject thought had the highest level of that attribute of anyone in the group. For example, in one of our studies, the attribute of interest was “Who in this group has the most jazz CDs?” Each individual in that group was therefore asked: (1) “How many jazz CDs do you actually have?” and (2), “Who in this group do you think has the most jazz CDs?”

Having obtained these two bits of information from each individual, we could then simulate all pyramiding search chains within each group, and determine the efficiency (number of nodes from start to end point) of each simulated search. We could also determine whether each search was successful – that is, which of all the pyramiding chains in the group ultimately identified the target individual – the one who actually had the most of the attribute at issue. Screening costs were then very simply determined from the total size of the group, and efficiency of pyramiding vs. screening search strategies could then be determined.

4.1 Populations
We included four different groups – independent populations – in this study. Groups were intended to be different in nature in order to allow for some variance in our findings. A total of 147 individuals participated in our study.
4.2 Search Topics

We used in total six different attributes or “search topics” in our studies (table 2).

4.3 Data Collection Procedure

We conducted a total of 18 topic studies with our 4 populations. Populations 1 and 2 participated in only 3 topics each because we were unsure that they would be willing to do more. Based upon our experiences with these two populations, populations 3 and 4 (surveyed later) were asked to participate in 6 topics each – and that proved to be an acceptable workload to these 2 groups. Taken together, responses from group members in the 18 topic studies enabled us to simulate a total of 663 search chains for study.

Data collection was done by means of written questionnaires. Each subject was asked: (1) about their own information regarding the topic at issue; and (2) whom they would refer us to: “We are looking for the one person in the group [who has climbed the highest mountain]. Please refer us to the group member who you think might be the person we are looking for, or to a group member who you think has better information on this topic than you do.” Subjects were only permitted to refer to persons within the group (who were recorded on a name list). The comprehensibility of the questions was checked using pre-tests.

During the experiment we carefully controlled for two very important possible sources of bias: First, recall that we ensured that all group members were present when we asked each group to fill out the questionnaire. This was necessary because, if a key member referred to by others was missing, many pyramiding search chain analyses would be impossible to complete. Second, we ensured that each group member filled out the questionnaire simultaneously and completely independently. Independence of referrals was, of course, a necessary precondition for our simulation.

4.4 Measurement
Efficiency of a pyramiding search. We here define the “efficiency” with which the person holding the greatest amount of an attribute is identified in a population as the number of interview contacts (links in the search chain) that must be made before that target person is correctly identified. In the case of a parallel screening search, the number of contacts that must be made will equal P where P is the number of individuals in the population. In the case of pyramiding one ends the search if a contact identified is the target person – that is, has the highest level in the group of the attribute sought for.

Figure 2 illustrates a fairly typical pattern of referrals. In this case, the question asked was, “Who in your group do you think has climbed the highest mountain?” Since we had questionnaire responses from everyone, we knew that the correct answer was Subject 20. As can be seen in Figure 2, when asked, this person correctly referred to herself as the person in this group who had climbed the highest mountain. Most potential chains in Figure 2 reached the target person (Subject 20) successfully. Thus, e.g. Subject 25 would have referred us to Subject 12, who would have referred us to Subject 34. Subject 34, in turn would then have referred us to Subject 20 – the correct target person. Note that the chain just described has a chain length of 4, as 4 persons were contacted in sequence in order to reach the target.

Referral chains starting with Subjects 1, 4, 13, 14, 15, 16, 17, 18, 22, and 35 would be classified as “unsuccessful” because they ended with the wrong person (Subject 23). These referral chains would terminate with the wrong person in such cases because Subject 23 incorrectly identified herself as the target person – and so did not refer searchers on to a next link in the chain. This corresponds to a hill-climbing search in which only a local peak was reached. In such a case, the searcher would either have to be content with the person found or start a new search. A special type of unsuccessful chain (not illustrated in Figure 2) is an endless circle. This occurs when, for example, Subject A refers to B who refers to C – who refers again to A. As soon as a person occurs repeatedly in one chain an endless circle results. As another special case, consider that the person with the highest level of an attribute in the group (e.g., the person in the group who actually had climbed the highest mountain) might be unaware of her status and refer to someone other than himself as having higher levels of that attribute. In such a case, if she referred to someone already in the chain, and endless circle would be created. If she referred to someone else not already part of the chain (with a lower level of expertise by definition), the researchers would say “Ah, we seem to have reached the peak one link in the chain earlier. Let's stop here.”

Insert figure 2 about here

Reputation of the target person. We wanted to determine whether the general popularity of the target person affected pyramiding search efficiency. This popularity is termed “reputation” or “prestige” of an actor in a network in sociometric measurement literature (Wasserman and Faust, 1994). Sociometric techniques suggest providing each respondent with a fixed contact roster and asking her to describe her relationship with every individual on the roster. The reputation of a subject increases if this actor is the receiver of many connections, meaning that many individuals know this person. In addition to the existence of a directed link, we also measure “tie strength” by using a scale adapted from Reagans and McEvily (2003) (4 = I know this person very well, 0 = I do not know this person at all). Tie strength increases the likelihood of knowing more about the areas of expertise an individual has.

The reputation of a subject was then measured as follows:

\[
R(n_i) = \frac{\sum_{j \neq i} y_{ij}}{(g-1) \times q_{\text{max}}}
\]

with

- \(R(n_i)\) = standardized reputation of actor \(i\)
- \(y_{ij}\) = Number of actors \(j\) connected to actor \(i\) with tie strength \(q_{ij}\)
- \(g\) = total size of social network (total number of actors in a social network)
- \(q_{\text{max}}\) = maximum tie strength between two actors.

Subject matter interest of population. It is plausible that referral quality will increase along with a respondent’s own level of interest in the topic being asked about. This is because respondents will have higher incentives to observe and store information regarding topics that are of greater personal interest (e.g. Lavin 1965; Renninger, Ewen and Lasher 2002; Krapp 2002; Hidi and Renninger 2006). Subject matter interest was measured on the individual level by a three-item scale with a 5-point Likert-type response format (1=fully agree, 5=fully disagree). The items were “I personally find the topic of [mountain climbing] very interesting”, “I really like to be involved in conversations about [mountain climbing]”, and “If somebody tells me something about [mountain climbing], then I can remember this information easily.” Cronbach's alpha is 0.88. Exploratory and confirmatory
factor analysis showed highly satisfactory values. The individual levels were aggregated into the variable “subject matter interest of population” by calculating the mean value of individual subject matter interest with regard to each topic.

4.5 Simulation of Pyramiding Search
The expected number of contacts needed when searching for a target subject via pyramiding cannot be obtained analytically. Therefore, in order to calculate this number, we resorted to a Monte Carlo simulation of a real search specifically programmed for this purpose in C++. We randomly selected a starting subject, X1. If X1 was already the target person, the number of subjects necessary to ask was 1. If not, we followed her referral to subject X2. If X2 was the target person, the number of persons necessary to ask was 2, and so on. If a chain broke or reached an end which was not the target person, another starting subject (other than X1 or any of the subjects in the referral chain starting with X1) was randomly selected and the procedure went on. The process did not end until the target subject was reached. If the target person did not refer to herself, we added one step (the “let's see if it still improves” step). In each system (i.e. each group and topic), 100,000 simulations of searches were conducted (total: 1,800,000).

5 Findings

5.1 Pyramiding search efficiency.
To analyze the difference in efficiency between the screening and pyramiding, we compare the simulated expected number of contacts to be made when using pyramiding with the effort of screening which is by definition equal to the number of subjects in the population.

We find that the effort of pyramiding searches is on average only 28.4% of the effort of screening, a large efficiency gain. In all 18 cases, pyramiding search involves considerably less effort than screening (table 3).

Insert table 3 about here

To interpret this finding, recall that, in the studies we reported upon here, we surveyed all members of each of our four groups. In other words, we did a full screening of these groups,
followed by a simulation of all possible pyramiding search chains. The findings from the screening data were what enabled us to identify the person who actually had the most of each of the attributes we were looking for our study – for example, the person with the most jazz CDs. This information, in turn, allowed us to know the attribute level held by the target person we would be looking for in our simulated pyramiding search studies, and to judge the success of each pyramiding search chain on this basis.

Note that in our experiments, we have calculated the expected efficiency as the average of all possible starting points. This corresponds to pyramiding searches in which the searcher has absolutely no prior knowledge regarding the subjects. In real-world practice, users of the pyramiding search process will start with the most expert population they can find via literature reviews, preliminary interviews with known experts and so on. Based on that information, they can select pyramiding chain starting points with higher than average promise. For this reason, our experimental determinations of the relative efficiencies of pyramiding vs snowballing efficiencies are likely to be conservative relative to efficiencies achieved real-world practice.

5.2 Pyramiding search efficiency under relaxed search criteria

Of course, in the real world, pyramiding search studies are substitutes for screening studies – and so researchers using pyramiding search would not know amount of the sought-for attribute that the “top” person in the population actually possessed. Without knowing that amount, the researcher must set a success criterion for a pyramiding search study either prior to initiating it, or during the study based upon assessments of the adequacy of what has been found to that point. (An example of the latter case: “At this point in our search we have found CEO candidate Mr. Marc. This person meets our needs very well – so we will stop searching for still better candidates.”)

There are now three possibilities: the researcher will set the success criterion at a level so high that no one in the population can meet it; at a level that only one person in the population can meet; or at a level several can meet. If (1) the attribute threshold is set higher than anyone in the population being searched can satisfy, the result will be failure for both screening and pyramiding search approaches. The effort of pyramiding will be similar to that of screening as in both cases all population members will be interrogated. If (2) the success level – the level of attribute sought at which one will stop a pyramiding search – is equal to the level of attribute held by the single best person in a population, then the results in the studies we reported upon in table 3 reflect the outcome – pyramiding search is likely to be significantly more efficient than screening. Finally, if (3), the success level is set at a level of attribute that two or more individuals in a population possess, then the efficiency of pyramiding search relative to screening procedures will be higher than those reported in table 3. To understand why this is so, it will be useful to look again at figure
2. Consider the effect of setting the attribute level for a successful search 60% or more of population maximum instead of at 100%. In that case, the discovery of individual #23 or any of several other individuals, would be considered a success rather than a failure – and the pyramiding search study could then have been terminated as a success at an earlier stage. This third case is quite realistic. In real life searches it is almost always the case that one does not necessarily need to reach the ‘top of the pyramid’ in order to get an appropriate solution. For example, the input of the second or third best lead user worldwide will probably be as good as the input of the number one. In most applications, a “really good” person is needed, not necessarily the best.

To study the consequences of this realistic third case systematically, we simulated the efficiency of pyramiding searches with relaxed search criteria. How many people do we have to ask if the objective is no longer the identification of the one top expert only, but to find either the best or the second best person? How high is the search efficiency if we accept one of the top 3 persons?

Figure 3 shows the aggregated findings. It shows that pyramiding effort sharply decreases as we relax the search criterion. If, for example, we are willing to accept any one of the top 3 persons in the population, we only need roughly half of the effort (15.9%) required to find the top 1 person (28.4%). Findings also show that there is an “elbow” in our samples at relaxing the search to one of top 5 persons. From that point, at least in these experiments, further relaxation is accompanied only by moderate efficiency gains.

5.3 Two factors affecting pyramiding efficiency

Findings reported in Table 3 show that pyramiding search efficiency relative to screening varied significantly among studies. In our research, the highest relative efficiency was found in the case when teachers were asked who among them had climbed the highest mountain (expected effort only 5% of screening). In contrast, when football team members were asked who among them had the longest stay in hospital, the expected effort was 65% of screening.

The fluctuation observed suggests that the relative efficiency of pyramiding will be contingent upon the presence of one or many specific conditions or factors. As was discussed earlier, we tested two such contingent factors in this study – subjects’ reputation and subjects’ personal interest in the topic being asked about – and found pyramiding search efficiency significantly affected by both.
With respect to reputation, recall from section 4 that, if a target person has a high reputation, i.e.
many people in the group “know him or her well,” the likelihood increases that more people in the
group will be able to correctly identify that person as the target person sought for. We measured the
effect of this factor by calculating the reputation of the target person for each of the 18 cells and
correlating the resulting value with the pyramiding efficiency. We indeed find a relatively high
correlation of $r = 0.37$ ($p<0.1$) between the target person’s reputation and pyramiding search
efficiency. This suggests that it will be easier to identify people with rare expertise if many people
know them well. In contrast, of course, when no one in a group knows much about the target
person, it is reasonable that the efficiency of pyramiding will decrease relative to screening. Indeed,
at the limit when no one knows anything about any other group member – it is a sample of strangers
with no information on each other – then pyramiding search picks would be completely random and
the expected value for the relative efficiency of pyramiding relative to screening would be 50%.

With respect to the impact of an individual’s personal interest in a subject, recall from section 4
that it is plausible that subjects’ referrals will be more accurate if they are interested in the topic
themselves. After all, a subject with a high interest in a topic is likely to be more motivated to
observe and store information regarding the topic at question than a subject with low interest. In
order to quantify the strength of this relationship, we correlated the average level of subject matter
interest in each cell with pyramiding search efficiency. Again, we find a high correlation of $r =
0.44$ ($p<0.05$), indicating that subject matter interest indeed impacts the efficiency of pyramiding.

6 Discussion

Prior to this article, individual researchers seeking to identify rare individuals in a population have
adopted pyramiding search in place of screening as a method of searching for rare subjects simply
because screening was too costly – and a pyramiding search “seemed to make sense.” In this paper
we have provided a first empirical study of the pyramiding search method versus standard screening
procedures, and have documented that it indeed can “make sense” with respect to economizing
upon the number of contacts that must be made to identify a target individual possessing high – or
even the highest – levels of a given attribute relative to the norm in a population.

We have also seen that the relative advantage pyramiding will hold over screening will vary
depending upon the knowledge and interest that group members have about one another and the
attribute being sought after. A more general way to think about this latter point is as follows. In
essence, the efficiency of screening depends only upon knowledge that one has about oneself (“Do
you have the characteristics we are looking for?”). Logically, therefore, it should work whenever
the individuals involved do know and are willing to report the requested information. (For example,
screening should work when the question is, “Do you wear glasses?” but will not work if the individual does not know the requested information about himself: e.g., many will not be able to answer the question, “What is your bone density?”

In contrast, the effectiveness of pyramiding depends upon the level of knowledge that individuals have about each other (known as social metaknowledge or transactive memory in the organisation and management science literature, see for example Wegner, Giuliano, and Hertel 1985, Wegner 1987,1995, Austin 2003, Borgatti and Cross 2003, Reagans, Argote, and Brooks 2005, Ren, Carley, and Argote 2006). Therefore, it should logically vary according to how many know the target individual, whether the sought-after bit of information is observable, interesting, or for some other reason widely known, and so on. Our data on the variation in the effectiveness of pyramiding search as a function of the reputation of the target person and the interest that the observer has in the sought-after information illustrates this general point. Researchers who contemplate using pyramiding search should consider the likely relevance of such factors in the samples they plan to study.

6.1 Applicability to real-world practice
We have seen that, in principle, pyramiding can indeed be a much more efficient way of identifying rare subjects than screening. We now point out that, under many real-world study goals and conditions, pyramiding potentially offers additional significant advantages relative to screening. These spring from the fact that pyramiding is, as was noted earlier, inherently a serial search process rather than a parallel one. In contrast, screening is usually – although not necessarily – carried out in parallel, as when one sends out a questionnaire to everyone in a sample at the same time.

Pyramiding always offers opportunities for incorporating learning at each step in a pyramiding search chain, should the investigator wish to do this. Many researchers do take advantage of this opportunity: they encourage those doing the pyramiding search interviews to apply what they learn from each node of a pyramiding search chain to modify the population being searched and/or the questions being asked.

As illustration, consider a pyramiding search study used to search out very knowledgeable “lead user” experts with respect to the causes of infections resulting from surgery (von Hippel et al 1999). During the pyramiding search process used in that study, expert surgeons and others with international reputations in the field were interviewed. Each was asked “Who do you know who knows something more (or different) about this topic than you do?” In addition, each was told about the goal of the study and then asked, “in your opinion, are we asking you the questions that will best get to our goal?” What was found in that study was that rich conversations with experts
encountered at several links in the pyramiding search chain caused the investigators to significantly change and refine the questions being asked and the population being searched. For example, one expert who had a major impact on the course of the entire study said, in effect, “You are still thinking about the problem of surgical infection control in the conventional way. What you need to do is think about it in this very different way instead. If you do choose to pursue the line of inquiry I suggest, you will need to talk to a different type of expert altogether. I recommend you start by talking to Dr. X, who has a great deal of knowledge in that field.”

The value of pyramiding’s ability to cross population boundaries and “jump to higher hills” (figure 1) has been quantitatively documented in lead user studies. Expert respondents offering the most valuable information, it has been found, are typically not located within the market and population originally explored, but rather are often found in “advanced analog” fields and populations quite distant from those starting points (Franke and Poetz 2008, Poetz and Prügl 2009). Similarly, finding new markets for existing technological competences (i.e. technological competence leveraging, Danneels 2002, 2007) depends on knowledge from analogous domains as well. Recently, Keinz and Prügl (2009) were able to show empirically that pyramiding search is a highly effective way to identify viable new fields of application for already existing technologies.

6.2 Suggestions for further research

Documenting the efficiency of pyramiding serves a useful purpose in validating it as a useful research technique that can offer significant value under many conditions. Indeed, the practice of pyramiding search extends far beyond formal research. For example, when journalists “network” to find the right sources for a newspaper article they are working upon, they are informally engaged in a pyramiding search. Many of us also engage in pyramiding searches in our daily lives, as when we attempt to find the best school for our child or the best doctor for our medical condition. Clearly, many practitioners as well as researchers could eventually benefit from more and deeper academic study of the topic. In what follows we suggest two general topics we think worthy of exploration.

First, further research should be conducted on the efficiency of pyramiding search under a range of conditions. There are doubtless many contingent variables in addition to the reputation and interest variables we examined in this initial study. Some additional variables to consider:

- **Observability.** The efficiency of pyramiding should increase as an attribute being sought becomes more easily observable. For example, more people are likely to know who within a group wears the largest glasses than who within the group has the rarest blood type – simply because the former is more easily observed.
- **Incentive to advertise an attribute.** The efficiency of pyramiding should increase along with the incentive of a target person to “advertise” the level of a “target attribute” she
possesses. For example, a lawyer might well want to make his or her legal specialty and skills widely known in order to attract new clients. Information on socially undesirable attributes, on the other hand, are less likely to be voluntarily disseminated by a person holding them, and so for these it is reasonable that pyramiding will, other things equal, work less efficiently.

- **The existence of data bases and scoring schemes.** The efficiency of pyramiding should increase along with the number and quality of data bases and scoring schemes related to the attribute being sought via a pyramiding study. For example, more observers are likely to know the professional attributes of an academic in a given field because many data bases report on related matters: the topics of academic research papers, the quality of journals in which academics publish, and the number of citations their publications receive. Similarly, many fans of baseball and other popular sports are likely to know the detailed capabilities and performances of professional players because rich online databases exist that present the information in terms of widely know categories, such as “number of times at bat,” and “number of home runs.”

- **Interview cost per contact.** In pyramiding, the “cost per contact” should include the cost of learning from each answer given and incorporating what is learned to adapt and refine the succeeding search steps. In the case of the 4 experiments in this paper, the information obtained was quantitative and could easily be computerized to update and guide interviewers during the search process at negligible cost. When answers sought are less clear-cut, the interview (and analysis) cost related to each contact will rise.

A second very important characteristic of pyramiding search is the opportunity to learn from each node contacted and to use this learning to improve a research project in major ways during the course of data collection. For example, as was mentioned earlier, discussions held with experts encountered during a 3M pyramiding search completely reframed the goal of that project.

Research on optimizing learning during pyramiding would be very novel. It might profitably begin with exploratory studies of pyramiding search processes involving rich learning at each node encountered. Findings could then be leveraged into quantitative findings with practical implications. For example, our field experience suggests that interviewees with higher levels of expertise – typically encountered at later stages of a pyramiding search process – will be more likely to reframe problems in useful ways. If this is indeed the case, then systematically postponing investment in “rich” interviewing until the later stages of a pyramiding process could be efficient.

All in all, we think that a great deal of valuable research can be done on the subject of pyramiding, and we hope that others will join us in further exploration of this interesting search method.
Acknowledgements

We thank Norbert Prügl for his help regarding the Monte Carlo simulations. Also, we are indebted to Peter Keinz, Karim Lakhani, Christopher Lettl, Marion Pötz, and Martin Schreier for valuable comments on earlier versions of this paper as well as the students of the E&I Research seminar at WU Vienna (Sabine Adler, Florian Czink, Christian Ditz, Karin Ebm, Samira Golestani, Peter Keinz, Johannes Kwizda, Alexander Leitl, Julia Meier, Johannes Ott, Fabian Ringler, Markus Schimanko, Georg Schuss, Christoph Steger, Dominik Szeless, Birgit Zehetmayer, Jutta Zwischenbrugger), Karin Ebm, Antoinette Rhomberg, Christine Stahl and Martina Warmuth for their support in data collection and data analysis and the anonymous referees for their input. Finally, we thank the „Austrian Science Fund“ (FWF) for funding the project.

References

http://www.soc.surrey.ac.uk/sru/SRU33.html

Figures

Figure 1: The search concepts of screening and pyramiding
Figure 2: Example of one referral pattern (students' association; mountaineering)
Figure 3: Efficiency of pyramiding search relative to screening in identifying the top 1, one of the top 2, one of the top 3 target persons etc.

Example:
- If one demands to identify the one top person within the population, the expected effort of pyramiding is 28.4% of screening.
- If one loosens this ambition and accepts one of the three top persons in the population, the expected effort decreases to 15.9%.
- Etc.

Base: Monte-Carlo simulation of 14.7 million pyramiding searches.

Tables
Table 1: Populations studied

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting frequency</td>
<td>Daily</td>
<td>monthly</td>
<td>weekly</td>
<td>2-3 times a week</td>
</tr>
<tr>
<td>Meeting purpose</td>
<td>Work</td>
<td>Socializing</td>
<td>hobby</td>
<td>hobby</td>
</tr>
<tr>
<td>Age</td>
<td>30-60</td>
<td>20-35</td>
<td>12-18</td>
<td>20-30</td>
</tr>
<tr>
<td>Size</td>
<td>38</td>
<td>35</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>Male</td>
<td>29</td>
<td>35</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>-</td>
<td>29</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Search topics used in studies

<table>
<thead>
<tr>
<th>Topic</th>
<th>Individual searched for</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Mountaineering</td>
<td>The individual in the group who had climbed the highest mountain (measured in meters)</td>
</tr>
<tr>
<td>(2) Jazz</td>
<td>The individual in the group who has most jazz CDs (measured in numbers)</td>
</tr>
<tr>
<td>(3) Weakness of vision</td>
<td>The individual in the group who has weakest eyes (measured in diopters)</td>
</tr>
<tr>
<td>(4) Car accident</td>
<td>The individual in the group who had had the most car accidents (measured in number of car accidents within the last 5 years)</td>
</tr>
<tr>
<td>(5) Stay in hospital</td>
<td>The individual in the group who had the longest stay in hospital in his or her life (measured in month and/or weeks and/or days)</td>
</tr>
<tr>
<td>(6) Apartment size</td>
<td>The individual in the group who has the biggest apartment (measured in square meters)</td>
</tr>
</tbody>
</table>

Table 3: Efficiency of pyramiding search relative to screening in identifying the person with the highest level of a given attribute in a population
<table>
<thead>
<tr>
<th>Group</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers (n=38)</td>
<td>2.00</td>
<td>16.23</td>
<td>3.49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(19%)</td>
</tr>
<tr>
<td></td>
<td>[0.23]</td>
<td>[8.61]</td>
<td>[1.83]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5%)</td>
<td>(43%)</td>
<td>(9%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Students’ association (n=35)</td>
<td>3.64</td>
<td>7.11</td>
<td>15.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(24%)</td>
</tr>
<tr>
<td></td>
<td>[1.93]</td>
<td>[3.46]</td>
<td>[7.45]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10%)</td>
<td>(20%)</td>
<td>(43%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chorus (n=41)</td>
<td>4.16</td>
<td>26.25</td>
<td>24.03</td>
<td>8.81</td>
<td>6.17</td>
<td>14.47</td>
<td>(34%)</td>
</tr>
<tr>
<td></td>
<td>[1.56]</td>
<td>[11.16]</td>
<td>[10.97]</td>
<td>[4.45]</td>
<td>[2.67]</td>
<td>[6.46]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10%)</td>
<td>(64%)</td>
<td>(59%)</td>
<td>(21%)</td>
<td>(15%)</td>
<td>(35%)</td>
<td></td>
</tr>
<tr>
<td>Football team (n=33)</td>
<td>5.25</td>
<td>4.49</td>
<td>9.83</td>
<td>2.95</td>
<td>21.40</td>
<td>14.50</td>
<td>(30%)</td>
</tr>
<tr>
<td></td>
<td>[2.19]</td>
<td>[2.60]</td>
<td>[5.83]</td>
<td>[1.49]</td>
<td>[9.10]</td>
<td>[6.94]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(16%)</td>
<td>(14%)</td>
<td>(30%)</td>
<td>(9%)</td>
<td>(65%)</td>
<td>(44%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(28%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In cells: Pyramiding efficiency (expected value [standard deviation] of persons asked in order to identify target person, result of Monte Carlo simulation), in parentheses relative to screening efficiency.

Topics: (1) = Mountaineering, (2) = Jazz, (3) = Weakness of vision, (4) = Car accident, (5) = Stay in hospital, (6) = Apartment size

* Topic not used in this group