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Abstract

This thesis deals with the appropriate handling of spatial data in general,
and in particular in the framework of economic sciences. An overview of well
known methods from the field of spatial statistics and spatial econometrics
is given. Furthermore a special class of spatial objects is described, namely
objects that are that far apart from all other observations in the dataset,
that they are not connected to them anymore. Different treatments of such
objects are suggested and their influence on the Moran’s I test for spatial
autocorrelation is analysed in more detail. After this theoretical part some
adequate spatial methods are applied to the well-known problem of R&D
spillovers. The corresponding dataset is not obviously spatial, nevertheless
spatial methods can be used. The spatial contiguity matrix is based on an
economic distance measure instead of the commonly used geographic dis-
tances. Finally, optimal design theory and spatial analysis are combined via
a new criterion. This criterion was developed to be able to take a potential
spatial dependency of the data points into account. The aim is to find the
best design points that show the same spatial dependence structure as the
true population.



Abstract

Diese Dissertation beschäftigt sich allgemein mit geeigneten Analysemetho-
den für räumliche Daten, wobei speziell auf Anforderungen der Wirtschafts-
wissenschaften eingegangen wird. Zunächst wird ein Überblick über die
bekanntesten Methoden der räumlichen Statistik und der räumlichen Ökono-
metrie gegeben. Des Weiteren wird eine spezielle Klasse von räumlichen Ob-
jekten behandelt. Es handelt sich hierbei um Objekte, die so weit von allen
übrigen Beobachtungen des Datensatzes entfernt sind, dass sie keinen Bezug
mehr zu diesen haben. Es werden verschiedene Möglichkeiten der Behand-
lung solcher Objekte erörtert und der Einfluss dieser Verfahrensformen auf
den Moran’s I Test für räumliche Autokorrelation analysiert. Nach diesem
theoretischen Teil werden einige geeignete räumliche Methoden für die Anal-
yse von Forschungs- und Entwicklungs Spillover Effekten verwendet. Das
Interessante hier ist, dass der entsprechende Datensatz keine offensichtliche
räumliche Komponente enthält, und dass das verwendete Distanzschema auf
wirtschaftlichen- anstelle der üblicherweise verwendeten geografischen Dis-
tanzen basiert. Im letzten Teil dieser Arbeit werden Optimal Design The-
orie und räumliche Analyse über ein neues Kriterium kombiniert. Dieses
Kriterium wurde entwickelt, um eine möglicherweise vorhandene räumliche
Abhängigkeit der Daten berücksichtigen zu können. Ziel ist, das beste Design
zu finden, so dass die wahre räumliche Abhängigkeitsstruktur der Population
in den Designdaten abgebildet wird.
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Chapter 1

Preposition

The topic of this thesis is the appropriate handling of spatial data in general,
and in particular in the framework of economic sciences. The field of spatial
econometrics is comparatively new, it arose in the 1970ies and although it
gained a high level of acceptance in the meanwhile, it is not for a long time
completely worked out yet, and there are still many questions left open.

The three general aims of this thesis are: Firstly, giving an overview over
spatial data and different appropriate estimation techniques that stem from
different disciplines, namely the field of spatial statistics and the field of spa-
tial econometrics. Secondly, use some of these spatial methods to analyse
real economic data, which are not obviously ’spatial’, to show that spatial
analysis is much more powerful than it might appear at first glance. Thirdly,
combine the fields of optimal design theory and spatial analysis via a new
criterion.

The thesis is structured in the following way:

Chapter 2: A general introduction to the field of spatial analysis is given.
In general, spatial data are characterized, and the differences to non-spatial
data are shown, and in particular different types of spatial data are described
and several approaches for the analysis are shown. This introduction also
gives an answer to the question why and when spatial methods are needed,
and what are the advantages compared with well known and well understood
’standard’ (non-spatial) methods of statistics and econometrics. The simi-
larities and differences between theses aspects are explained and singled out,
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and also the distinction between spatial statistics and spatial econometrics
is worked out.

Chapter 3: This chapter deals with the first question that has to be an-
swered whenever spatial data are of interest, namely how to measure and test
a potentially existent spatial effect in a dataset. The focus is put on the prob-
ably most famous statistic for spatial dependence, the Moran’s I. Moran’s
I can be used for global as well as local spatial structures. Furthermore, the
moments of I, which are needed for a quite simple asymptotic test about the
level of autocorrelation, are given. Close related to I is the Moran’s plot,
which is a diagnostic tool to visualize spatial autocorrelation. Beside I the
Getis statistic, which is an other measurement for spatial autocorrelation is
mentioned.

Chapter 4: Treatment of far-off objects in Moran’s I test. Here a ques-
tion, that arose during the work on this thesis is discussed. It is about a
special class of objects in a spatial dataset, namely objects that are far apart
from all other observations in the sense that they are not spatially connected
to others, but still belong to the dataset. The questions to be answered are,
how to deal with such objects, and how do different treatments of such ob-
servations influence the Moran’s I test.

Chapter 5: This chapter deals with the appropriate estimation of param-
eters in spatial analysis. There are two different ideas behind the estimation
of spatial models, and therefore two different approaches. One possibility is
to filter out the spatial effect and use standard statistical methods for further
analysis of the filtered (spaceless) data. The other alternative is to use spe-
cial spatial estimation techniques where the spatial dependence is explicitly
included in the estimation. Depending whether the methods stem from the
field of spatial statistics or spatial econometrics, there are differences in the
procedures.

Chapter 6: It contains an application of some of the previously explained
methods from spatial econometrics to empirical data, namely an analysis of
R&D spillovers. For the R&D spillovers data, the question to be answered
is: Do R&D spillover effects exist? This topic is discussed in many papers
and as non-spatial analysis lead to different conclusions, methods from the
field of spatial econometrics are applied.
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Chapter 7: The last chapter deals with methods from the field of Optimal
Design. The aim is to find the best design for an experiment to detect spatial
dependence if it is existent and at the same time to avoid to spuriously
detect a spatial structure if it is not inherent in the population. Therefore a
new design criterion is presented and different algorithms how to compute a
design are discussed. The procedure is illustrated by applying it to different
datasets: an artificial dataset, a well-known case study in spatial analysis,
the R&D dataset from chapter 6, and an other real dataset from the field of
geostatistics presented in chapter 5.
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Chapter 2

Spatial Data

The main characteristic of spatial data is, that they contain beside the at-
tribute information also information about the location of the object, there-
fore they are also called geo-referenced data. Whenever data contain infor-
mation about their location, the question rises whether this information can
be used to improve statistical conclusions drawn from this data. In recent
years a growing number of spatial data can be observed, mainly through the
dispersion of geographic information systems (GIS) and spatial data analysis
software.

The locational information of a spatial object can represent either single
points, or areas in a certain study region. Commonly it is assumed that the
study area is a two dimensional surface or map. The pattern of points on a
two dimensional surface can be divided into three classes:

(i) Regular pattern: The distances between the points are equal, the
objects form a regular grid.

(ii) Random pattern: The placements of the points vary randomly
across the whole region, and do not influence each other.

(iii) Aggregated or clustered pattern: The points tend to occur in
clusters.

see e.g. Davis (2002). Alternatively to points, the surface can be partitioned
into areas. These areas are always assumed to be mutually exclusive and
two adjacent regions always share a common bound. Such a partition is then
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called spatial tessellation of the region into n tiles, see e.g. Tiefelsdorf (2000).
The areas are not restricted in any way, except of the limitations given above.
They can occur in various forms, e.g. the bounds can be straight lines or cleft
edges, the sizes can be the same or diverse. The areas can represent natural
entities like political or economic districts, or artificial entities created by a
scientist. Spatial tessellation can easily be reduced to point patterns, sim-
ply using only a single point instead of the whole region, usually the centroid
is used to represent an area, but also capitals of political districts can be used.

Spatial relationships are modelled via the connectivity of the single obser-
vations. There are many different approaches known, how to quantify the
connectivity or proximity. There is a distinction between two general propos-
als, (1) measuring the similarities e.g. via neighbourships, and (2) measuring
the dissimilarities e.g. via the distances between the spatial objects. For a
strict and general mathematical definition of relations between spatial objects
see e.g. Tiefelsdorf (2000, p. 25).

2.1 Spatial Weight Matrix

However the spatial relationships are quantified, they are represented in spa-
tial weight matrices (also called spatial link matrices). In general, a spatial
link matrix U = [uij] is a fixed (non-stochastic) n by n matrix (n is the
number of observations in the dataset) with the following properties:

(i) uij = 0 if i and j are not spatially connected and if i = j by
definition, i.e. all elements on the main diagonal are zero, this
means an object is not spatially connected with itself.

(ii) uij 6= 0 if i and j are spatially connected, and usually these values
are greater than zero.

If similarities are measured the spatial link matrix is called contiguity matrix,
if dissimilarities are measured it is called distance matrix. Similarity and
dissimilarity matrices are inversely related - the higher the connectivity, the
smaller the distance and vice versa.
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2.1.1 Contiguity Matrices

Similarity can be quantified in many different ways, hence there are many
different spatial link matrices in use. Neighbourhood matrices are sym-
metric, binary, n by n spatial link matrices with uij = 1 if two observations
are neighbours and uij = 0 if not and if i = j by definition, i.e. an ob-
ject is not neighbour of itself. The concrete form of the matrix depends on
the definition of the neighbourship. The most commonly used definitions of
neighbourhood are:

(i) Rook’s criterion: Adjacent areas are neighbours if they share
nonzero-length boundaries.

(ii) Bishop’s criterion: Adjacent areas are neighbours if they share
zero-length boundaries.

(iii) Queen’s criterion : Adjacent areas are neighbours if they share
zero-length or nonzero-length boundaries.

Corresponding to the diverse criterions, the neighbours (N) of an object (O)
can be seen in the following pictures:

ON

N

N

N

Rook’s criterion

O

N

N

N

N

Bishop’s criterion

ON

N

N

N

N

N

N

N

Queen’s criterion

To build neighbourhood matrices one can use first-, second-, ... order neigh-
bours. Neighbours can also be defined via a certain distance r, all objects
which lie within this distance (radius) are neighbours of an observation.

Spatial connectivity matrices are similar to neighbourhood matrices, but
they are non-binary. They are also originally symmetric n by n matrices, and
the elements uij measure the intensity of the contiguousness by some ade-
quate function, e.g. simply using the inverse distances between the locations.
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A quite common practice to define a spatial weight matrix U is the use of
a distance decay function, that means observations which are geographically
further distant are downweighted, the degree of the weighting is controlled
by a locality parameter δ. The distance decay can e.g. be modelled by a
negative exponential function,

uij = exp(−δdij) (2.1)

with dij denoting the geographical distances between region i and j, see e.g.
Badinger et al. (2002).

2.1.2 Distance Matrices

Similar to these connectivity matrices are distance matrices, which are again
symmetric n by n matrices, here the elements uij measure the distance be-
tween locations. Again the elements on the main diagonal are zero by defini-
tion, i.e. the distance between an object and itself is always zero. In practice
the geographic distances between two observations are often used. If the
location of an observation is a whole area, the centers of the regions can be
used to measure the distances.

In spatial econometrics usually contiguity matrices are used, whereas in spa-
tial statistics the analysis are typically based on distance matrices. It is
worth to notice, that neither distance- nor contiguity matrices are restricted
to geographic space, one can also use some other kind of characteristics to
formulate an adequate distance or connectivity measurement. In chapter 6
such ’non-geographic’ distances and connectivity measurements are used to
analyse empirical data.

2.1.3 Coding Schemes

The original symmetric spatial link matrices are often converted by using cod-
ing schemes to cope with the heterogeneity which is induced by the different
linkage degrees of the spatial objects. Tiefelsdorf (2000) defines the linkage
degree of a spatial object i by the total sum of its interconnections with all
other spatial objects, that is di =

∑n
j=1 uij. There are mainly three different

coding schemes used: (1) the globally standardized C-coding scheme, (2) the
row-sum standardized W-coding scheme, and (3) the variance stabilizing S-
coding scheme. In all these three schemes the overall sum of the elements is
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n. Standardized spatial weight matrices are non-binary and often also non-
symmetric. The most important, or most commonly used coding scheme
is the row-sum standardized W-coding scheme. In such a row standardized
spatial link matrix the sum of each row is equal to one, the elements are
simply calculated by wij =

uijPn
j=1 uij

.

Beside these global spatial link matrices, which represent the connectivity
between all observations, there exist also local spatial weight matrices, which
show the spatial connectivity for a single object.

2.1.4 Local Spatial Structures

For each spatial object i a local spatial link matrix can be constructed, by
simply using the i-th row and the i-th column of the global spatial link ma-
trix and setting all other elements zero. This gives n star-shaped local spatial
matrices Ui:

Ui =




0 · · · 0 u1i 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 ui−1,i 0 · · · 0
ui1 · · · ui,i−1 0 ui,i+1 · · · ui,n

0 · · · 0 ui+1,i 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 uni 0 · · · 0




. (2.2)

The global spatial link matrix U in turn yields to be U = 1
2

∑n
i=1 Ui for

symmetric link matrices. For non-symmetric link matrices V it holds that
1
2
· (V + V′) =

∑n
i=1 Vi, see e.g. Tiefelsdorf (2000).

2.2 Spatial Statistics versus Spatial Econo-

metrics

The difference between spatial statistics or geostatistics and spatial econo-
metrics is the same as in statistics and econometrics in general. In spatial
econometrics a theoretical model plays the central role, whereas in geostatis-
tics the data are in the focus. Thus, in spatial statistics the approach is data
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based, in spatial econometrics the approach is model based.

The original problem in geostatistics, summarized by Clark and Harper
(2000), is on one hand

to characterise and interpret the behavior of the existing sample
data

and on the other hand

to produce ’maps’ of the values at unsampled locations. That
is, to estimate unknown values at locations which have not been
sampled.

A definition of the main subject in spatial econometrics is e.g. given in Anselin
(1999):

Spatial econometrics is a subfield of econometrics that deals with
the treatment of spatial interaction (spatial autocorrelation) and
spatial structure (spatial heterogeneity) in regression models for
cross-sectional and panel data.

Based on the different approaches and requirements of spatial statistics and
spatial econometrics, there are different concepts used, and their importance
is weighted differently, although both fields deal more or less with the same
tenor, namely data which are somehow related over space. The theoretical
background are for both subjects spatial stochastic processes, as spatial data
are assumed to exhibit some kind of structure reflecting the spatial depen-
dence, and some additional random effect.

The main question, both in the field of spatial statistics and the field of
spatial econometrics, is whether there is a significant regional effect inher-
ent in the data or not. If data are spatially independent, there is no need
for a special treatment, standard methods can be used, whereas if data are
spatially connected, special techniques have to be adopted because standard
assumptions, like uncorrelated errors, are violated.
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2.3 Spatial Dependence and Spatial Autocor-

relation

The first question that rises, if one has to deal with spatial data, is: Are data
spatially dependent? If data are spatially dependent, this dependence can
be exploited to improve statistical conclusions. In this case special methods
are needed. If data are not regional dependent, there is no information
spillover in the dataset that can be used, and standard methods can be
executed. Many different explanations of spatial dependence and spatial
autocorrelation can be found in literature. Fotheringham et al. (2002) e.g.
give the following specification of spatial dependence:

It is the extent to which the value of an attribute in one location
depends on the values of the attribute in nearby locations.

And Griffith (2003) says about spatial autocorrelation:

It (...) is the correlation among values of a single variable strictly
attributable to the proximity of those values in geographic space
(...).

Both of these explanations are related to geographic space, nevertheless this
is no general restriction, all kinds of measurement that are modelled in a
spatial link matrix can be used.

The subject of spatial dependence and autocorrelation is related to the well
known problem of autocorrelation in time series. The main difference be-
tween spatial- and time autocorrelation is the dimension and the direction
of the dependence, in time series there is only one dimension and only one
direction of influence possible, by contrast in the field of spatial dependence
there are two dimensions and therefore also two directions of dependence.
This is, what makes the whole field more complex. In general, the meaning
of autocorrelation is the same:

(i) Positive spatial autocorrelation: Nearby values of a variable tend
to be similar, high values tend to occur near high values, medium
values near medium values, and low values near low values.

(ii) Negative spatial autocorrelation: Nearby values of a variable tend
to be dissimilar, high values tend to occur near low ones, medium
values near medium ones, and low values near high ones.
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(iii) No spatial autocorrelation: there is no pattern identifiable, high,
medium and low values appear in a random formation.

2.4 Spatial Stochastic Processes

A stochastic (or random) process is a collection of random variables {Z(t)|t ∈
T} indexed by a set T , where T is typically assumed to be a subset of the
real numbers or [0,∞). This is standard practice in time series literature.
However, the set can also be a more general index set D, e.g. pairs of integers
which can represent coordinates on a surface, or a subset of the plane. The
big difference to time series is, that spatial index sets do not have a natural
ordering like time indices (Ripley, 1981). The process {Z(x)|x ∈ D} is often
called a (random) process if D ⊆ R and it is often called a (random) field if
D ⊆ Rn for n ≥ 2 (Rao, 1979). The concrete form of the stochastic process is
then given by the joint distribution function FZ1,...,Zn(·, ..., ·). The covariance
and the correlation between two observations Z(xi) and Z(xj) in X are given
by

VC(xi,xj) = E[{Z(xi)− E(Z(xi))}{Z(xj)− E(Z(xj))}] (2.3)

and

Corr(xi,xj) =
VC(xi,xj)√

Var(xi)Var(xj)
. (2.4)

There are different kinds of stochastic processes, depending on some special
properties they own. A stochastic process is called

(i) Stationary, if the distributions are invariant under an arbitrary
translation of the points by a vector h:

P(Z(x1) < z1, ..., Z(xk) < zk) = P(Z(x1+h) < z1, ..., Z(xk+h) < zk)

A stationary process is homogeneous in space.

(ii) Weakly Stationary (or second-order stationary), if the moments
of the stochastic process are invariant under translations. This
means for the first moment, that E[Z(x)] = E[Z(x + h)] = m,
and for the covariance function, that E[{Z(x)−E(Z(x))}{Z(x+
h) − E(Z(x + h))}] = VC(h). The mean is constant and the
covariance only depends on the separation h.
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(iii) Isotropic, if its covariance function only depends on the length
|h| of the vector h and not on its orientation.

(iv) Intrinsic, if for every vector h the increment Yh(x) = Z(x+h)−
Z(x) is a weakly stationary random process in x.

(v) Gaussian, if its finite-dimensional distributions are multivariate
Gaussian.

These definitions can be found e.g. in Chilès and Delfiner (1999).

These classifications of stochastic processes are commonly used and quite
important in geostatistics, in the field of spatial econometrics this distinc-
tion does not play such an important role and therefore can not be found in
econometric literature that often, except of the specification of a Gaussian
process. Hence, it is specified in more detail.

Gaussian Spatial Process

A random process depends on its internal structure and on the input of the
spatial process. If the input of the spatial process is a white noise, i.e. it is
a random vector where the elements are independently identically normally
distributed, the random process is called Gaussian, see Tiefelsdorf (2000).
For a regression model with normally distributed regression disturbances
ε = y −Xβ, all finite-dimensional distributions are multivariate Gaussian,
that is:

f(z1, ..., zn) =
1

n
√

(2π)2
|Ω(ρ)|− 1

2 exp

(
1

2
(y −Xβ)′Ω−1(ρ)(y −Xβ)

)
,

where Ω(ρ) denotes the covariance matrix of the disturbances, it depends
on a spatial autocorrelation parameter ρ, and ε ∼ N(0,Ω(ρ)). The spatial
parameter ρ gives the magnitude of the spatial dependence, it can be positive
or negative, if ρ is zero, the spatial structure is irrelevant (Tiefelsdorf, 2000).

Spatial Gaussian processes are further divided into sub-divisions, namely
the autoregressive (AR) processes and the moving average (MA) processes.
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Autoregressive Spatial Process

The Simultaneous Autoregressive Process is the most commonly used
AR process in spatial econometrics. In the common econometric notation of
a regression model, it is expressed by

y = Xβ + u, with u = ρVu + ε, (2.5)

where ρ is the spatial autoregressive parameter, V is a spatial link matrix,
now denoted by V to give consideration to the fact that it can be standard-
ized and asymmetric, and ε are i.i.d. ∼ N(0, σ2I) errors. This model is called
spatial autoregressive (SAR) error model and it can be easily trans-
formed into the following formula, which is called the reduced form of (2.5),
see Anselin (1999):

y = Xβ + ρVy −VXρβ + ε. (2.6)

The dependent variable y is influenced by Xβ (like in standard regression
models), by the spatially dependent endogenous variable ρVy, and by the
spatial trend component −VXρβ, where the components of the coefficient
ρβ are not directly identifiable. It is required that the estimated coefficient
ρ̂β fulfills the so called common factor constraint: ρ̂β = ρ̂β̂ (Tiefelsdorf,
2000).
The covariance matrix Ω(ρ) between the error terms specifies the kind of
spatial process, for the SAR process it is

Ω(ρ) = σ2[(I− ρV)′(I− ρV)]−1. (2.7)

As Ω(ρ) has to be positive definite, ρ is restricted to the interval ] 1
λmin

, 1
λmax

[,
where λ denotes the eigenvalues of the spatial link matrix V, the smallest
and the biggest one.

Assuming that there is no spatial effect of Xβ, i.e. leaving out the spatial
trend component −VXρβ, leads to a spatial lag model:

y = ρVy + Xβ + ε (2.8)

with ε being i.i.d. error terms. In this case the spatial dependence is strictly
attributable to the endogenous variable Vy. The term Vy is called spatial
lag or spatial smoother, if the spatial link matrix V is row-standardized, it
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can be interpreted as a weighted average of spatially connected observations.
The spatial lag corresponds to the shift in time series. The main difference
between the spatial lag and the time shift is, that a spatial lag does not have
a ’natural’ direction of the influence like a time shift.

The Conditional Autoregressive (CAR) Process is very seldom used
in practice because the covariance matrix is given by

Ω(ρ) = σ2(I− ρV)−1

and is therefore very restrictive, the spatial link matrix has to be symmet-
ric, which forbids the application of the S- and W-coding scheme. For a
CAR process, values of ρ are also restricted to the interval ] 1

λmin
, 1

λmax
[, see

Tiefelsdorf (2000).

Moving Average Process

The Spatial Moving Average Process is given by

y = Xβ + u, with u = ρVε + ε,

ρ stands again for the spatial parameter, here it is the moving average pa-
rameter, and it can take values in the interval ] − 1

λmax
,− 1

λmin
[, and ε are

again i.i.d. errors with ε ∼ (0, σ2I). The covariance matrix between the
error terms is given by

Ω(ρ) = σ2(I + ρV)(I + ρV)′

see Tiefelsdorf (2000).
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Chapter 3

Measuring Spatial Dependence

The first question to be answered whenever analysts deal with spatial data is,
whether there is a regional effect inherent or not. If not, i.e. if the observations
are spatially independent, standard methods can be used. If there exists a
significant spatial structure in the data, standard methods lead to biased
and/or inconsistent results. There are different methods for measuring and
testing a potential spatial effect in a dataset.

3.1 Moran’s I
The most famous procedure for measuring and testing spatial autocorrela-
tion is based on Moran’s I statistic developed by Moran (1948), (1950a) and
(1950b). Moran’s I is a measure for the intensity of spatial autocorrelation
in a spatial stochastic process. It was originally developed for binary contin-
guity matrices (neighbourhood matrices) but it is not restricted to this case,
one can also use standardized continuous spatial link matrices.

For a standard regression model, normally one is interested whether the
residuals are spatially dependent or not. If they are not, one can use stan-
dard estimation methods. If they are, one has to use special methods to take
care of the spatial dependence because autocorrelation in the error term leads
to biased estimates of the residual variance and inefficient estimates of the
regression coefficients when the OLS estimation method is applied, see e.g.
Cliff and Ord (1981). Tiefelsdorf (2000) focuses on spatial econometrics, and
therefore gives the following explanation of Moran’s I: It is a scale invariant
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ratio of quadratic forms in the normally distributed regression residuals ε̂.

I =
ε̂′ 1

2
(V + V′)ε̂

ε̂′ε̂
, (3.1)

where V is a standardized spatial link matrix (generated by using the C-
, S- or W-coding scheme) and ε̂ are usually the normally distributed OLS
residuals of the regression model. If the spatial dependence of a single variable
is of interest, one simply uses a regression on only an intercept and takes the
corresponding residuals for the calculation of I. This form can also be found
in Cliff & Ord (1981).

3.1.1 Moran’s Plot

Moran’s plot is a diagnostic tool to visualize spatial autocorrelation. It is
close related to Moran’s I. The Moran’s plot is a scatterplot, and it gives a
graphical representation of the relationship between a variable y and its spa-
tial lag Vy, typically the row-standardized spatial weight matrix is used. For
such a scatterplot first the variable y is standardized to z-scores zY , second
the spatial lag of zY is constructed by multiplying it with the spatial weight
matrix V to get VzY . Moran’s plot is the scatterplot of VzY against zY .
The slope of a no-intercept regression model of VzY on zY is Moran’s I. I
can be interpreted as the spatial autocorrelation, i.e. the correlation between
zY and its spatial lag VzY . In Figure 3.1 an example for a Moran scatterplot
is given, Moran’s I is exactly the slope of the regression line. Data for this
plot stem from the classical Columbus Crime dataset from Anselin (1988)
which includes observations for 49 contiguous Planning Neighbourhoods in
Columbus, Ohio. Variable y is a measure of crime, it includes residential
burglaries and vehicle thefts per thousand households in a region, and the
spatial weight matrix V is the row-standardized neighbourhood matrix.

3.1.2 Moran’s I Test

The Moran’s I test is used for parametric hypotheses about the spatial au-
tocorrelation level ρ, i.e. H0 : ρ = 0 against HA : ρ > 0 for positive spatial
autocorrelation; or H0 : ρ = 0 against HA : ρ < 0 for negative spatial auto-
correlation. Tests for positive correlation are much more relevant in practice,
because negative spatial autocorrelation very seldomly appears in the real
world.
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Figure 3.1: Moran scatterplot for 49 observations

Inference for Moran’s I is commonly based on a normal approximation using
standardized z(I)-values, although an exact test can be constructed. The
practical problem, when running the exact test is, that numerical integration
is needed.

The moments of Moran’s I under the assumption of spatial independence can
can be expressed in terms of the eigenvalues of the matrix K = M1

2
(V+V′)M

(Tiefelsdorf, 2000), with M = I−X(X′X)−1X′ denoting the general projec-
tion matrix. The eigenvalue expression is useful, if the exact distribution
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of I under the null is required. The distribution function of I is given in
Tiefelsdorf (2000). If only the moments are of interest, the evaluation of the
eigenvalues can be bypassed by making use of the trace operator tr(.). The
expected value of I under the null is given by

E[I | H0] =
tr(K)

n− k
=

tr{M1
2
(V + V′)M}
n− k

=
tr(MV)

n− k
. (3.2)

The expected value is independent of the design points, i.e. the location of the
observations is not relevant. If the spatial dependence of a single variable is
of interest, the regression on only an intercept is used and the corresponding
residuals are taken to calculate I. In this case k = 1 and M = In − 1

n
1n1

′
n.

Under the assumption that V is standardized and
∑n

i=1

∑n
j=1 vij = n holds,

the expected value of I under the null reduces to E[I|H0] = − 1
n−1

, see Cliff
& Ord (1981).
The variance of I under the null hypothesis is given by

Var[I | H0] =
tr(MVMV′) + tr(MV)2 + {tr(MV)}2

(n− k)(n− k + 2)
− {E[I | H0]}2

=
2{(n− k)tr(K2)− tr(K)2}

(n− k)2(n− k + 2)
, (3.3)

see Henshaw (1966). For k = 1 and rank(V) = n, this variance can be given
in terms of the eigenvalues γi of matrix K: Var[I|H0] = 2n

n2−1

∑n
i=1(γi− γ̄)2 =

2n
n2−1

σ2
γ, given in Cliff & Ord (1981).

An application of the theoretical moments of Moran’s I is the approxima-
tion of the exact distribution of Moran’s I by well-known simple distribu-
tions, that allow fast assessment of the significance of an observed Moran’s
I without numerical evaluation of its exact probability. If the skewness and
the kurtosis of Moran’s I (see Tiefelsdorf, 2000) do not differ substantially
from their counterparts of the normal distribution, the z-transformation of
Moran’s I can be used to obtain the significance of an observed Moran’s
I. However, if there is a marked difference between the skewness and the
kurtosis of Moran’s I to that of the normal distribution, alternative approxi-
mation strategies, such as a saddlepoint approximation need to be employed
(Tiefelsdorf, 2002).
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The z-transformed Moran’s I is for normally distributed regression resid-
uals and well-behaved spatial link matrices under the assumption of spatial
independence asymptotically normally distributed with expected value 0 and
variance 1, and z(I) is defined as

z(I) =
I − E[I]√

Var[I]
, (3.4)

see e.g. Tiefelsdorf (2000). Values of z(I) are compared with the well known
critical values of the N(0, 1) distribution and whenever z(I) lies in the crit-
ical region, a hypothetical spatial Gaussian process (either AR or MA) can
be assumed.

An analysis of the effect of objects, which are that far apart of all others
that they lead to spatial weight matrices which do not have full rank, on the
Moran’s I test can be found in the next chapter.

3.1.3 Local Moran’s I
Moran’s I, given in (3.1), is a measure of global spatial autocorrelation. In
the case of different spatial structures inherent in the dataset, i.e. if some
regions have a positive spatial autocorrelation and some others have a nega-
tive spatial autocorrelation, they can compensate each other, and the global
Moran’s I might indicates spatial independence. Such local effects can be
detected and tested via the local Moran’s I, which can be calculated for each
region in the dataset. The local Moran’s I is defined as a ratio of quadratic
forms,

Ii =
ε̂′Viε̂

ε̂′ε̂
, (3.5)

where Vi is a local spatial link matrix, see e.g. formula (2.2). The general
distributional properties of global Moran’s I also apply to local Moran’s Ii,
but the specific distributional properties are different, local Moran’s I is not
asymptotically normally distributed, see Tiefelsdorf (2002). The average of
all n local Moran’s Ii’s gives the global I, i.e. I = 1

n

∑n
i=1 Ii.
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3.2 Getis Statistic

Another measurement of the intensity of spatial connectivity is the so-called
Getis statistic, Gi(δ), Getis & Ord (1992). It was originally developed as a
diagnostic to reveal local spatial dependencies that are not properly captured
by global measures as the Moran’s I statistic. It is a distance-weighted and
normalized average of observations (x1, ..., xn) from a relevant variable x:

Gi(δ) =

∑
j vij(δ)xj∑

j xj

, i 6= j, (3.6)

where vij(δ) are the elements of a row-standardized spatial link matrix, δ is a
locality parameter of the regional weighting scheme (typically δ is a distance
parameter and observations which are further apart are down-weighted). Like
the Moran’s I, the Gi(δ) statistic can be standardized to zGi which is ap-
proximately Normal (0,1) distributed and can therefore be directly compared
with the well-known critical values. The expected value of Gi(δ) represents
the realization at location i when no spatial autocorrelation occurs.

E[Gi(δ)] =

∑
i6=j vij(δ)

(n− 1)
. (3.7)

The variance of Gi(δ) is given by:

Var[Gi(δ)] =

∑
i6=j vij(n− 1−∑

i6=j vij)

(n− 1)2(n− 2)

(
Yi2

Yi1

)
,

where Yi1 =
P

j xj

n−1
and Yi2 =

P
j x2

j

n−1
− Y 2

i1.

20



Chapter 4

Treatment of Far-Off Objects in
Moran’s I Test

4.1 Motivation

Observations that are far apart from all other objects in the sense that they
have no spatial links to other design points will be called far-off objects.
The treatment of far-off observations in spatial analysis is not really worked
out in literature although it is an interesting question, because even when
such objects are not spatially linked to others, they have influence on the
spatial analysis. This can be seen e.g. when looking at the expected value
of Moran’s I in an intercept only model, here E[I|H0] should be equal to
− 1

n−1
but this relation holds only if V has full rank, i.e. all observations are

derived from different locations, and all of them are somehow related to at
least one other observation, and therefore no objects are completely sepa-
rated from all the others. The problem of far-off objects can easily occur
if neighbourhood-based spatial link matrices are used, and it might occur
if the connectivity is based on distance matrices and a sill exists, i.e. from
a certain distance onwards the connectivity is assumed to be negligible and
therefore set to zero. The relevance of the topic of far-off objects can be seen
in chapter 7.

One of the first ideas that comes into thought, of how to treat such observa-

1Chapter 4 is published as a working paper in the Research Report Series of the Uni-
versity of Economics and Business Administration, see Gumprecht (2007b).
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tions, might be to simply ignore them insofar to run the standard procedures
and do not care about the zero lines in V and accept that E[I|H0] 6= − 1

n−1
.

Another idea is to exclude them from the dataset and use only an (n − r)
points design, because no spatial connections to other objects should have no
influence on the spatial autocorrelation of all other observations. But there is
a difference whether far-off objects are excluded or not. Thus, the treatment
of far-off observations has influence on measuring and testing spatial auto-
correlation. Another possibility to avoid zero-lines and zero-columns in V is
to add a very small value ν to all elements (except of the ones on the main
diagonal) of the unstandardized spatial weight matrix U, then no element is
completely separated, and if ν is small enough it should has no influence on
the general structure, but it prevents getting zero-lines. So, there are three
kinds of specifications:

(s) Include the separated observations and work with a spatial weight ma-
trix which does not have full rank.

(e) Exclude the separated observations, i.e. work with (n−r) observations.

(ν) Include all n observations in the analysis, and use a modified unstan-
dardized spatial weight matrix with elements uij + ν for all i 6= j to
avoid zero-lines and zero-columns.

Whichever specification is used, it influences I, E(I) and Var(I) and there-
fore z(I) and potentially the decision, whether to reject the null hypothesis
or not.

4.2 Definitions

For reasons of simplicity it is assumed that only one object (the first one) is
completely separated from all others. For the three different treatments of
the far-off observation the spatial weight matrices are slightly different.

For treatment (s) the unstandardized spatial link matrix is a symmetric n
by n matrix U(s), the row-standardized weight matrix V(s) is nonsymmetric:
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U(s) =




0 0 0 0 · · · 0
0 0 u23 u24 · · · u2n

0 u32 0 u34 · · · u3n
...

...
...

...
. . .

...
0 un2 un3 un4 · · · 0




,

V(s) =




0 0 0 · · · 0
0 0 u23Pn

j=2 u2j
· · · u2nPn

j=2 u2j

0 u32Pn
j=2 u3j

0 · · · u3nPn
j=2 u3j

...
...

...
. . .

...
0 un2Pn

j=2 unj

un3Pn
j=2 unj

· · · 0




.

If the first observation is excluded, i.e. treatment (e) is used, the unstan-
dardized spatial weight matrix is a symmetric (n − 1) by (n − 1) matrix
U(e):

U(e) =




0 u23 u24 · · · u2n

u32 0 u34 · · · u3n

u42 u43 0 · · · u4n
...

...
...

. . .
...

un2 un3 un4 · · · 0




,

V(e) =




0 u23Pn
j=2 u2j

· · · u2nPn
j=2 u2j

u32Pn
j=2 u3j

0 · · · u3nPn
j=2 u3j

...
...

. . .
...

un2Pn
j=2 unj

un3Pn
j=2 unj

· · · 0




.

For treatment (ν), i.e. a small value ν is added, U(ν) is again a symmetric n
by n matrix:

U(ν) =




0 0 + ν 0 + ν · · · 0 + ν
0 + ν 0 u23 + ν · · · u2n + ν
0 + ν u32 + ν 0 · · · u3n + ν

...
...

...
. . .

...
0 + ν un2 + ν un3 + ν · · · 0




,
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the corresponding row-standardized weight matrix V(ν)∗ goes to V(ν) if ν → 0

V(ν)∗ =




0 ν
(n−1)ν

· · · ν
(n−1)ν

ν
(n−1)ν+

Pn
j=2 u2j

0 · · · u2n+ν
(n−1)ν+

Pn
j=2 u2j

ν
(n−1)ν+

Pn
j=2 u2j

u32+ν
(n−1)ν+

Pn
j=2 u3j

· · · u3n+ν
(n−1)ν+

Pn
j=2 u3j

...
...

. . .
...

ν
(n−1)ν+

Pn
j=2 u2j

un2+ν
(n−1)ν+

Pn
j=2 unj

· · · 0




,

V(ν) =




0 1
(n−1)

1
(n−1)

· · · 1
(n−1)

0 0 u23Pn
j=2 u2j

· · · u2nPn
j=2 u2j

0 u32Pn
j=2 u3j

0 · · · u3nPn
j=2 u3j

...
...

...
. . .

...
0 un2Pn

j=2 unj

un3Pn
j=2 unj

· · · 0




.

In the calculation of Moran’s I, E[I|H0] and Var[I|H0] the following terms
are used: a symmetric spatial weight matrix G = 1

2
(V + V′), the projection

matrix for an intercept only model M = In − 1
n
11′ and K = M′GM. For

the three different specification (s), (e) and (ν), these matrices have different
forms, and all of them can be written in the structure of block matrices.
Specification (s) gives:

G
(s)
n×n =




0 0 0 · · · 0
0 0 g23 · · · g2n

0 g32 0 · · · g3n
...

...
...

. . .
...

0 gn2 gn3 · · · 0




=




A1×1 : B1×(n−1)

.. ..
B′

(n−1)×1 : C(n−1)×(n−1)


 ,

M
(s)
n×n =




1− 1
n

− 1
n

· · · − 1
n

− 1
n

1− 1
n
· · · − 1

n
...

...
. . .

...
− 1

n
− 1

n
· · · 1− 1

n


 =




M
(s1)
1×1 : M

(s2)
1×(n−1)

.. ..

M
(s2)′
(n−1)×1 : M

(s3)
(n−1)×(n−1)


 .
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In case (e) the dimension reduces to (n− 1)

G
(e)
(n−1)×(n−1) =




0 g23 · · · g2n

g32 0 · · · g3n
...

...
. . .

...
gn2 gn3 · · · 0


 = C(n−1)×(n−1),

M
(e)
(n−1)×(n−1) =




1− 1
(n−1)

− 1
(n−1)

· · · − 1
(n−1)

− 1
(n−1)

1− 1
(n−1)

· · · − 1
(n−1)

...
...

. . .
...

− 1
(n−1)

− 1
(n−1)

· · · 1− 1
(n−1)


 .

Finally for case (ν), the projection matrix M
(ν)
n×n = M

(s)
n×n, and

G
(ν)
n×n =




0 1
2(n−1)

1
2(n−1)

· · · 1
2(n−1)

1
2(n−1)

0 g23 · · · g2n
1

2(n−1)
g32 0 · · · g3n

...
...

...
. . .

...
1

2(n−1)
gn2 gn3 · · · 0




=




A1×1 : B
(ν)
1×(n−1)

.. ..

B
(ν)′
(n−1)×1 : C(n−1)×(n−1)


 .

These matrices are used in the next sections to quantify and compare the
values of I, E[I|H0], Var[I|H0] and z(I) to find out if the choice of the
treatment of a far-off object has influence on the Moran’s test.

4.3 Moran’s I
Formulas for Moran’s I, E[I|H0] and Var[I|H0] are given in (3.1), (3.2) and
(3.3). I contains G and the vector of the residuals ε̂n×1 = [ε̂1, ε̂2, . . . , ε̂n]′ =
[a′ : b′], where a is simply the residual ε̂1 of the far-off object and b is
an (n − 1) × 1 vector of the residuals ε̂i (i = 2, ..., n) of the ’well-behaved’
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objects. Using the block structure helps to see the difference between the
three specifications.

I =
ε̂′ 1

2
(V + V′)ε̂

ε̂′ε̂
=

ε̂′Gε̂

ε̂′ε̂
=

[a′ : b′]
(

A : B

B̈′ : C̈

)[
a

b̈

]

[a′ : b′]
[

a

b̈

]

=
a′Aa + b′B′a + a′Bb + b′Cb

a′a + b′b
. (4.1)

For the different treatments of the separated observation the blocks of the
corresponding matrix G are inserted in (4.1). This gives for case (s), where
the first element is separated and therefore A = 0 and B is a vector of zeros

I(s) =
b′Cb

a′a + b′b
=

∑n
i=2

∑n
j=2 ε̂iε̂jgij∑n

i=1 ε̂2
i

. (4.2)

In case (e) the separated element is excluded, I(e) is given by

I(e) =
b′Cb

b′b
=

∑n
i=2

∑n
j=2 ε̂iε̂jgij∑n

i=2 ε̂2
i

. (4.3)

For case (ν) A = 0 but now B =
[

1
2(n−1)

, . . . , 1
2(n−1)

]
, therefore

I(ν) =
b′B′a + a′Bb + b′Cb

a′a + b′b
=

∑n
i=2

∑n
j=2 ε̂iε̂jgij − ε̂2

1

n−1∑n
i=1 ε̂2

i

. (4.4)

This follows from the fact that b′B′a = a′Bb = 1
2(n−1)

∑n
i=2 ε̂iε̂1, because

∑n
i=2 ε̂i = −ε̂1, these terms can be written as

−ε̂2
1

2(n−1)
, thus b′B′a + a′Bb =

−ε̂2
1

(n−1)
.

Comparing (4.2) and (4.3) shows that I(e) ≥ I(s) because the nominator
is the same but the denominator of I(e) is smaller or equal to the one of I(s),
equality holds only if ε̂1 = 0, i.e.

I(e) = I(s) +
a′ab′Cb

b′b(a′a + b′b)
= I(s) +

ε̂2
1

∑n
i=2

∑n
j=2 ε̂iε̂jgij

∑n
i=2

∑n
j=2 ε̂iε̂j

(
ε̂2
1 +

∑n
i=2

∑n
j=2 ε̂iε̂j

) .
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Furthermore I(s) ≥ I(ν) because here the denominators are the same but the
nominator of I(ν) is smaller or equal than the one of I(s), see (4.2) and (4.4).
Again, equality holds only for ε̂1 = 0.

I(s) = I(ν) +
ε̂2
1

(n− 1)
∑n

i=1 ε̂2
i

.

Comparing all three treatments of a separated observation gives the following
relationship of the Moran’s I values:

I(ν) ≤ I(s) ≤ I(e). (4.5)

This result is quite plausible. If the far-off observation is completely excluded
it has no influence at all, the Moran’s I measures only the connectivity
between all other (n − 1) objects and is therefore greater than in case of
including the far-off object, the observation that lies far apart is not taken
into account. On the other hand if the far-off object is included but zero-
weighted it effects the Moran’s I only insofar as the corresponding residual
is included in the denominator, whereas if the far-off object is weighted with

1
2(n−1)

this object increases the denominator and at the same time decreases

the overall connectivity (i.e. the nominator).

4.4 Expected Value of I
The expected value of I under the null hypothesis is E[I | H0] = tr(K)

n−k
,

see (3.2). Using the same block-structure for M and G as before, helps to
find the difference between the three different treatments of the separated
object. For E[I|H0] only the trace of K is relevant, tr(K) = tr(M′GM) =
tr(MM′G) = tr(MG). Block-structure notation gives:

tr(K) = tr







M(1) : M(2)

.. ..
M(2)′ : M(3)







A : B
.. ..
B′ : C







= tr







M(1)A + M(2)B′ : M(1)B + M(2)C
.. ..

M(2)′A + M(3)B′ : M(2)′B + M(3)C





 .

Since only the main diagonal elements enter the trace, it follows that

tr(K) = M(1)A + M(2)B′ + M(2)′B + M(3)C.
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Now the three different treatments can be evaluated.

Case (s), the far-off object is included and zero-weighted, A = 0 and B =
[0, . . . , 0]

tr(K(s)) = tr(M(s3)C) = − 1

n

n∑
i=2

n∑
j=2

gij = − 1

n
(n− 1). (4.6)

∑n
i=2

∑n
j=2 gij = n − 1 follows directly from the construction of G and C

respectively. The expected value for the intercept model (k = 1) is therefore

E[I(s)|H0] = − 1

n
. (4.7)

Case (e), the far-off observation is deleted, the corresponding matrix K(e)

has to be used

tr(K(e)) = tr
[
M(e)C

]
= − 1

n− 1

n∑
i=2

n∑
j=2

gij = − 1

n− 1
(n− 1) = −1. (4.8)

Here, the number of objects taken into account is (n−1) and as k = 1 for the
intercept model, the denominator of the expected value is (n−1)−k = n−2.
Thus

E[I(e)|H0] = − 1

n− 2
. (4.9)

Case (ν), K(ν) is used, now B(ν) is not a vector of zeros like in case (s), and
therefore

tr(K(ν)) = tr(M(s1)A) + tr(M(s2)B(ν)′) + tr(M(s2)′B(ν)) + tr(M(s3)C)

= 0− 1

2n
− 1

2n
− n− 1

n
= −1. (4.10)

This leads to

E[I(ν)|H0] = − 1

n− 1
. (4.11)

Case (ν) is the only one which leads for an intercept only model to the ex-
pected value given in Cliff & Ord (1981), see section 3.1.2.
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Comparing the expected values of I(s), I(e) and I(ν) under the null, see
(4.7), (4.9) and (4.11), gives the following order:

E[I(e)] < E[I(ν)] < E[I(s)]. (4.12)

The absolute values of the expected values have the reverse order, that is:
|E[I(s)]| < |E[I(ν))] < |E[I(e)]|. The expected value of I for an intercept
model does neither depend on the locations nor on the attribute values of
the design points, it just depends on the number of the objects and the kind
of treatment of far-off objects.

4.5 Variance of I
The variance of I under the null hypothesis is Var[I | H0] = 2{(n−k)tr(K2)−tr(K)2}

(n−k)2(n−k+2)
,

already given in (3.3), with tr(K2) = tr(KK) = tr(MGMG). In block-
notation this trace is:

tr(KK) = tr(MGMG)

= tr

[(
M(1) : M(2)

M̈(2)′ : M̈(3)

)(
A : B

B̈′ : C̈

)(
M(1) : M(2)

M̈(2)′ : M̈(3)

)(
A : B

B̈′ : C̈

)]
.

Matrix multiplication gives a matrix which can be written in the form of 4
blocks, for the trace only the elements of the main diagonal are crucial, they
are denoted D1 which is an 1×1 matrix and D2 which is an (n−1)× (n−1)
matrix. tr(KK) = tr(D1)+tr(D2). The matrices D1 and D2 are composed of

8 other matrices D
(1)
1 , . . . ,D

(8)
1 and D

(1)
2 , . . . ,D

(8)
2 respectively, and tr(KK) =∑2

i=1

∑8
j=1 tr(D

(j)
i ), as the trace of a sum of matrices is equal to the sum of

the traces. The 16 different traces of matrix-blocks are:

tr(D
(1)
1 ) = tr(M(1)AM(1)A) tr(D

(1)
2 ) = tr(M(2)′AM(1)B)

tr(D
(2)
1 ) = tr(M(2)B′M(1)A) tr(D

(2)
2 ) = tr(M(3)B′M(1)B)

tr(D
(3)
1 ) = tr(M(1)BM(2)′A) tr(D

(3)
2 ) = tr(M(2)′BM(2)′B)

tr(D
(4)
1 ) = tr(M(2)CM(2)′A) tr(D

(4)
2 ) = tr(M(3)CM(2)′B)

tr(D
(5)
1 ) = tr(M(1)AM(2)B′) tr(D

(5)
2 ) = tr(M(2)′AM(2)C)

tr(D
(6)
1 ) = tr(M(2)B′M(2)B′) tr(D

(6)
2 ) = tr(M(3)B′M(2)C)

tr(D
(7)
1 ) = tr(M(1)BM(3)B′) tr(D

(7)
2 ) = tr(M(2)′BM(3)C)

tr(D
(8)
1 ) = tr(M(2)CM(3)B′) tr(D

(8)
2 ) = tr(M(3)CM(3)C)
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For the different treatments of the separated object the corresponding ma-
trices M and G are used. Since A is always 0, the traces of all matrices
that include A are zero, and traces which include matrix B are zero in case
(s) and (e). The last term tr(D

(8)
2 ) is relevant for all three cases, it can be

further simplified:

tr(D
(8)
2 ) = tr(M(3)CM(3)C)

= tr([I− 1

n
11′]C[I− 1

n
11′]C)

= tr(CC− 1

n
11′CC− 1

n
C11′C +

1

n2
11′C11′C)

= tr(CC)− 2

n
tr(11′CC) +

1

n2
tr(11′C11′C).

From construction of G and C respectively, G = G′ and C = C′ follows.
tr(CC) =

∑n
i=2

∑n
j=2 g2

ij

tr(11′CC) = tr(1′C′C1) =
∑n

i=2

(∑n
j=2 gij

)2

tr(11′C11′C) = tr(1′C11′C1) =
(∑n

i=2

∑n
j=2 gij

)(∑n
i=2

∑n
j=2 gij

)

= (n− 1)2.
Thus,

tr(M(3)CM(3)C) =
n∑

i=2

n∑
j=2

g2
ij −

2

n

n∑
i=2

(
n∑

j=2

gij

)2

+
1

n2
(n− 1)2. (4.13)

Note that for case (e), where only the (n − 1) objects which are spatially
connected are included, (4.13) is slightly different because the number of
the design points is (n − 1) and M(e) is used instead of M(3), see section

4.2. Therefore tr(M(e)CM(e)C) =
∑n

i=2

∑n
j=2 g2

ij− 2
(n−1)

∑n
i=2

(∑n
j=2 gij

)2

+
1

(n−1)2
(n− 1)2. In general, the following relationship holds:

tr(CC) ≤ tr(11′CC) ≤ tr(11′C11′C),

equality holds only if all elements of C except for one are zero, this case is
not relevant here, it would mean that all objects but two are far apart from
each other.
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For case (s) B = [0, . . . , 0], therefore only tr(D
(8)
2 ) = tr(M(s3)CM(s3)C)

plays a role. This leads to a variance

Var[I(s) | H0] =
2{(n− k)tr(M(s3)CM(s3)C)− tr(K(s))2}

(n− k)2(n− k + 2)
(4.14)

where tr(K(s))2 =
(
− (n−1)

n

)2

, tr(K(s)) is given in (4.6), and tr(M(s3)CM(s3)C)

is given in (4.13).

For case (ν) G(ν) is used, A = [0], B(ν) = [ 1
2(n−1)

, . . . , 1
2(n−1)

], and consider-
ably more terms are unequal zero and therefore relevant for the variance:
tr(D

(6)
1 ) = tr(M(s2)B(ν)′M(s2)B(ν)′) = 1

4n2 ,

tr(D
(7)
1 ) = tr(M(s1)B(ν)M(s3)B(ν)′) = 1

4n2 ,

tr(D
(8)
1 ) = tr(M(s2)CM(s3)B(ν)′) = − 1

2n2 ,
thus, tr(D1) = 0.

tr(D
(2)
2 ) = tr(M(s3)B(ν)′M(s1)B(ν)) = tr(M(s1)BM(s3)B(ν)′) = tr(D7

1) = 1
4n2 ,

tr(D
(3)
2 ) = tr(M(s2)′B(ν)M(s2)′B(ν)) = tr(M(s2)B(ν)′M(s2)B(ν)′) = tr(D

(6)
1 ) =

1
4n2 ,

tr(D
(4)
2 ) = tr(M(s3)CM(s2)′B(ν)) = − 1

2n2 ,

tr(D
(6)
2 ) = tr(M(s3)B(ν)′M(s2)C) = tr(M(s2)CM(s3)B(ν)′) = tr(D

(8)
1 ) = − 1

2n2 ,

tr(D
(7)
2 ) = tr(M(s2)′B(ν)M(s3)C) = tr(D

(4)
2 ) = − 1

2n2 ,

tr(D
(8)
2 ) = tr(M(s3)CM(s3)C),

thus, tr(K2) =
∑n

j=1 = tr(D
(j)
2 ) = − 1

n2 + tr(M(s3)CM(s3)C). The variance
is given by

Var[I(ν) | H0] =
2{(n− k)

[− 1
n2 + tr(M(s3)CM(s3)C)

]− tr(K(ν))2}
(n− k)2(n− k + 2)

(4.15)

with tr(K(ν))2 = (−1)2, see (4.10) and tr(M(s3)CM(s3)C) is again the one
given in (4.13).

In case (e) where the separated observation is completely excluded from the
dataset, tr(K(e)K(e)) = tr(M(e)CM(e)C), and

Var[I(e) | H0] =
2{(n− 1− k)tr(M(e)CM(e)C)− tr(K(e))2}

(n− 1− k)2(n− 1− k + 2)
(4.16)
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with tr(K(e))2 = (−1)2, see (4.8).

tr(M(e)CM(e)C) =
∑n

i=2

∑n
j=2 g2

ij − 2
n−1

∑n
i=2

(∑n
j=2 gij

)2

+ 1
(n−1)2

(n − 1)2,

the number of design points is (n− 1) instead of n.

Finding the relationship between the variances is not that simple as in
case of the Is and their expected values. The ordering of Var[I(ν)] and
Var[I(s)] is quite obvious, Var[I(ν)] < Var[I(s)], which follows directly from
(4.14) and (4.15), the denominators are the same, and the nominator of
Var[I(ν)] is smaller. The relationships between Var[I(e)] and Var[I(s)] is
more complex, nominators as well as denominators are different, see (4.14)
and (4.16). To find the difference tr(M(e)CM(e)C) is expressed in terms of
tr(M(s3)CM(s3)C):

tr(M(e)CM(e)C) = tr(M(s3)CM(s3)C) +
2n2−3n−2n

Pn
i=2(

Pn
j=2 gij)

2−1

(n−1)n2 .

Hence, Var[I(e)|H0] is equal to:

2

{
(n− 1− k)

[
tr(M(s3)CM(s3)C) +

2n2−3n−2n
Pn

i=2(
Pn

j=2 gij)
2−1

(n−1)n2

]
− tr(K(e))2

}

(n− 1− k)2(n− 1− k + 2)
.

It can also be written in form of Var[I(s)|H0] plus additional terms:

Var[I(e)|H0] = Var[I(s)|H0]

+
2
{

(n− 1− k)
[
tr(M(s3)CM(s3)C) + 2n2−3n−2n(tr(1′CC1))+1

(n−1)n2

]
− 1

}

(n− 1− k)2(n− k)

− 2(n− k)tr(M(s3)CM(s3)C)− (n−1)2

n2

(n− k)2(n− k + 2)
.

The magnitude of the difference depends on the concrete values of the spatial
link matrix via tr(MCMC) and tr(11′CC) which appear in the formula. To
show the difference, two extreme cases are examined:

(1) All objects (except for the first, which is far-off) are neighbours of
all others, this can happen if e.g. a critical distance dc is defined
and within this distance each object is regarded as neighbour, if
dc is large enough and the observations are near each other, each
object is a neighbour of every other object - of course except for
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the far-off one; unstandardized- and row-standardized spatial link
matrices are given by:

U
(1)
n×n =




0 0 0 · · · 0
0 0 1 · · · 1
0 1 0 · · · 1
...

...
...

. . .
...

0 1 1 · · · 0




,V
(1)
n×n =




0 0 0 · · · 0
0 0 1

n−2
· · · 1

n−2

0 1
n−2

0 · · · 1
n−2

...
...

...
. . .

...
0 1

n−2
1

n−2
· · · 0




,

and matrix G = 1
2
(V + V′) is:

G
(1)
n×n =




0 0 0 · · · 0
0 0 1

n−2
· · · 1

n−2

0 1
n−2

0 · · · 1
n−2

...
...

...
. . .

...
0 1

n−2
1

n−2
· · · 0




=




A1×1 : B1×(n−1)

.. ..

B′
(n−1)×1 : C

(1)
(n−1)×(n−1)


 .

(2) Each object has only one neighbour (except of the first far-off
one), i.e. there are only separated pairs of neighbourships (further
assumption needed: n−1 is even). The corresponding spatial link
matrices are:

U
(2)
n×n =




0 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0
0 0 0 1 0 · · · 0 0
0 0 0 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 1 0




= V
(2)
n×n = G

(2)
n×n

=




A1×1 : B1×(n−1)

.. ..

B′
(n−1)×1 : C

(2)
(n−1)×(n−1)


 .

These matrices correspond to case (s) where the far-off object is included in
the analysis. If the far-off observation is excluded, case (e), the corresponding
matrices are slightly different. The dimension reduces to (n− 1)× (n− 1) by
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simply deleting the first line and the first column. For these extreme cases
the variances of I(s) and I(e) can be explicitly specified and in the follow-
ing the standardized Moran’s I values can be compared. For the variances
(3.3), of case (s) and (e), the corresponding matrices K(s) = M(s3)CM(s3)C
and K(e) = M(e)CM(e)C are needed, the projection matrix M depends on
the treatment of the far-off object (separation or exclusion), spatial weight
matrix C depends on the extreme case (all objects are neighbours, or only
pairs of neighbours).

Under treatment (s) and extreme case (1)

tr(K(s1)K(s1)) = tr(M(s3)C(1)M(s3)C(1))

= tr(C(1)C(1))− 2

n
tr(11′C(1)C(1)) +

2

n2
tr(11′C(1)11′C(1))

=
n∑

i=2

n∑
j=2

g2
ij −

2

n

n∑
i=2

(
n∑

j=2

gij

)2

+
2

n2

(
n∑

i=2

n∑
j=2

gij

)2

=
(n− 1)

(n− 2)
− 2

n
(n− 1) +

2

n2
(n− 1)2

for tr(K(s1))2, see (4.6), it does not depend on the concrete values of the
spatial link matrix. The variance of I(s1) under the null can be written as:

Var[I(s1)|H0] =
2
{

(n− k)
[

n−1
n−2

− 2
n
(n− 1) + 2

n2 (n− 1)2
]− (n−1)2

n2

}

(n− k)2(n− k + 2)

=
2n2 − 3n + 6

n2(n2 − n− 2)
. (4.17)

By contrast, excluding the far-off object needs

tr(K(e1)K(e1)) = tr(M(e)C(1)M(e)C(1))

= tr(C(1)C(1))− 2

n− 1
tr(11′C(1)C(1)) +

2

(n− 1)2
tr(11′C(1)11′C(1))

=
n∑

i=2

n∑
j=2

g2
ij −

2

n− 1

n∑
i=2

(
n∑

j=2

gij

)2

+
2

(n− 1)2

(
n∑

i=2

n∑
j=2

gij

)2

=
(n− 1)

(n− 2)
− 2

n− 1
(n− 1) +

2

(n− 1)2
(n− 1)2 =

n− 1

n− 2
.
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Again, tr(K(e1))2 does not depend on the design points, it is the one given in
(4.8). The variance of I(e1) under the null is given by:

Var[I(e1)|H0] =
2
{
(n− 1− k)n−1

n−2
− 1

}

(n− 1− k)2(n− 1− k + 2)

=
2
{
(n− 2)n−1

n−2
− 1

}

(n− 2)2n
=

2

n(n− 2)
. (4.18)

Comparing the variances of I for extreme case (1) shows that Var[I(e1)|H0] ≥
Var[I(s1)|H0], see (4.18) and (4.17). The difference is 5n−6

n2(n2−n−2)
, equality

holds for n = 6
5
, for n = −1, n = 0, n = 2 the denominator is zero and the

difference is not defined, for n → ∞ the difference between the variances
goes to zero. Thus, the bigger the design, the less important is the treatment
of the far-off object.

For treatment (s) and extreme case (2), tr(K(s2)K(s2)) and tr(K(s2))2 are
used.

tr(K(s2)K(s2)) = tr(M(s3)C(2)M(s3)C(2))

= tr(C(2)C(2))− 2

n
tr(11′C(2)C(2)) +

2

n2
tr(11′C(2)11′C(2))

=
n∑

i=2

n∑
j=2

g2
ij −

2

n

n∑
i=2

(
n∑

j=2

gij

)2

+
2

n2

(
n∑

i=2

n∑
j=2

gij

)2

= (n− 1)− 2

n
(n− 1) +

2

n2
(n− 1)2

tr(K(s2))2 is given in (4.6).

Var[I(s2)|H0] =
2{(n− k)[n− 1 + 2

n2 − 2
n
]− (n−1)2

n2
}

(n− k)2(n− k + 2)
=

2(n2 − 3)

n2(n + 1)
. (4.19)

Excluding the first observation, case (e), gives for extreme case (2)

tr(K(e2)K(e2)) = tr(M(e)C(2)M(e)C(2))

= tr(C(2)C(2))− 2

n
tr(11′C(2)C(2)) +

2

n2
tr(11′C(2)11′C(2))
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=
n∑

i=2

n∑
j=2

g2
ij −

2

n

n∑
i=2

(
n∑

j=2

gij

)2

+
2

n2

(
n∑

i=2

n∑
j=2

gij

)2

= (n− 1)− 2

(n− 1)
(n− 1) +

2

(n− 1)2
(n− 1)2 = (n− 1)

and tr(K(e1))2 = (−1)2, see (4.8), this leads to

Var[I(e2)|H0] =
2n(n− 2) + 2k(1− n)

(n− 1− k)2(n− k + 1)
=

2(n2 − 3n + 1)

n(n− 2)2
. (4.20)

Comparing the variances of I for the second extreme case shows the same
relationship as for extreme case (1): Var[I(e2)|H0] ≥ Var[I(s2)|H0], see (4.20)
and (4.19), taking the far-off object into account leads to a smaller vari-
ance. The difference is 6n2−26n+24

(n−2)2(n−1)n2 , equality holds for n = 4
3

and n = 3,
for n = 0, n = 1, n = 2 the denominator is zero and the difference is not
defined, and as in extreme case (1): the greater n, the smaller the difference,
for n →∞ the difference between the variances goes to zero.

For both extreme cases of the spatial link matrix the variance of I is smaller if
the far-off observation is included and zero weighted. Under the assumptions
given above, the order of the variances for the three different treatments of
a far-off object is:

Var[I(ν)|H0] < Var[I(s)|H0] < Var[I(e)|H0]. (4.21)

4.6 Standardized Moran’s I
The test statistic for the Moran’s test z(I) is given in (3.4). To find the
difference between the three treatments of a far-off observation, the corre-
sponding values of I, E[I|H0] and Var[I|H0] are used.

The difference between z(I(ν)) and z(I(s)) depends on the value of ε̂1 as I(ν)

includes this residual whereas it does not appear in I(s). For reasons of sim-
plicity ε̂1 = 0 is assumed. Then I(ν) = I(s), and the nominator I(ν)−E[I(ν)]
of z[I(ν)] is greater than the one of z[I(s)], as Var[I(ν)] < Var[I(s)] it follows
that

z[I(ν)] > z[I(s)].

36



Thus, adding a small value ν to all elements of the spatial link matrix has
an influence on the Moran’s test. If the residual of the far-off object is zero,
the Moran’s test is more likely to reject the null if ν is added to U than in
case of putting zero weight to the observation which is far apart. Whereas
if ε̂1 6= 0 the difference of the nominators depends on the magnitude of this
residual and a general ordering can not be given.

To clarify the difference between excluding and including but zero-weighting
the far-off observation the two extreme cases from the previous section have
to be considered. The difference of I(e) and I(s) is again dependent on the
value of ε̂1. To get rid of this difference ε̂1 is again assumed to be zero, now
I(e) = I(s) holds. For extreme case (1) the two different treatments (s) and
(e) give:

z[I(e1)] =
I(1) + 1

n−1√
2

n(n−2)

and z[I(s1)] =
I(1) + 1

n√
2n2−3n+6

n2(n2−n−2)

.

For extreme case (2), where each object, except of the far-off one, has only
one neighbour, standardized Moran’s Is for case (s) and (e) are:

z[I(e2)] =
I(2) + 1

n−1√
n(2n2−6n+3)

(n−2)2

and z[I(s2)] =
I(2) + 1

n√
2(n2−3)
n2(n+1)

.

The relationships between the variances depend on the number of design ob-
jects, see Figure 4.1. For both extreme cases the difference between treatment
(s) and (e) is positive, but becomes negligible if n increases. For extreme case
(1) the difference between the variances goes faster to zero than for extreme
case (2). From n approximately greater than 30 the difference is nearly zero,
i.e. it does not play a role which treatment is used. Note that z(I) is only
approximately N(0, 1)-distributed, therefore it should not be used for smaller
n anyway. For small designs an exact test should be used. The exact distri-
bution of Moran’s I can be found in (Tiefelsdorf & Boots, 1995).

The relationships of the standardized Moran’s I values depend on the num-
ber of objects and additionally on the value of I - this dependence can not
be factored out by the zero-assumption on ε̂1, because even if I is the same
for both treatments, the size of I still plays a role for the nominator of z[I].

37



The relationships for the two extreme cases and the two different treatments
of the far-off observation for some different values of I can be seen in Figures
4.2, 4.3, 4.4, and 4.5. The first plot always shows the standardized Moran’s I
depending on n, the second one shows the difference of the z-values between
treatment (s) and (e) for the two extreme cases under the assumption that
ε̂1 = 0. In the plots on the left hand side it can be seen that for all examined
values of I, z(I) of extreme case (1) is always bigger than of case (2) - at least
for designs with more than 5 points, for small designs the approximation of
the N(0, 1) distribution should not be used anyway. The differences between
treatment (s) and (e) do not converge to zero for all values of I. It depends
much on the assumed level of autocorrelation. A positive difference means
that treatment (e) leads to a more conservative test, i.e. the test based on
treatment (s) rejects the null hypothesis earlier. If the difference is negative,
the test based on treatment (e) rejects the null earlier. For both extreme
cases the differences have the same sign for designs which are large enough
to use the normal approximation. For very small values of I, e.g. I = 0.01
treatment (s) rejects the null earlier in small designs, see Figure 4.2, the dif-
ference becomes negative if n increases. For medium and high values of I
treatment (e) rejects the null earlier, see Figure 4.4 and 4.5.

For large designs the following ordering of the standardized values of I,
under assumption ε̂1 = 0, can be given:

z[I(e)] ≤ z[I(s)] ≤ z[I(ν)]. (4.22)

4.7 Findings

The standardized Moran’s I depends on the value of I, the residuals of the
far-off objects and the concrete form of the spatial link matrix. Therefore,
the relationships between the values of I, Var[I|H0] and z[I] from the dif-
ferent methods of treating far-off objects, given in (4.5), (4.21) and (4.22),
do not hold in general as the assumptions that were made are very restric-
tive. Only the behavior of the expected values E[I|H0] holds without such
assumptions, see (4.12). Nevertheless, the influence of far-off observations on
the behavior of Moran’s I and the corresponding spatial autocorrelation test
is better understood now. The problem of far-off objects arose during the
work on a paper about optimal designs for spatial data (Gumprecht, Müller,
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Figure 4.1: Variances of I and differences between the variances within the
extreme cases

& Rodŕıguez-Dı́az, 2007), see chapter 7. For a given set of spatial objects the
task is to find the optimal design to detect spatial dependence that might
be in the data. The best design is found by an algorithm which evaluates a
lot of different possible designs concerning a special design criterion. If these
designs are subsets of all n objects, it can easily happen that they include
far-off objects. If the number of the design points is large, it does not make
a difference which treatment is used for the far-off object. Due to practical
reasons, treatment (e) is not recommended, because even if an observation
is not connected to others it might be important in the design.
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Figure 4.2: z(I) for I = 0.01, and differences within the extreme cases

Figure 4.3: z(I) for I = 0.10, and differences within the extreme cases
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Figure 4.4: z(I) for I = 0.50, and differences within the extreme cases

Figure 4.5: z(I) for I = 0.99, and differences within the extreme cases

41



Chapter 5

Handling of Spatial Data

If there is some spatial dependence existent in the data, there are mainly two
possibilities to deal with it. The first alternative is to filter out the spatial
effect and use standard statistical methods for the analysis, e.g. use OLS for
a regression model. The second one is to use some special spatial estimation
techniques, e.g. Spatial Two Stage Least Squares technique or Maximum
Likelihood technique in spatial econometrics and variogram estimation and
kriging in spatial statistics.

5.1 Spatial Filtering

The basic idea of spatial filtering is to separate the regional interdependen-
cies by partitioning the original variable into two parts: a filtered non-spatial
(so called ’spaceless’) variable, and a residual spatial variable, and use con-
ventional statistic techniques that are based on the assumption of spatially
uncorrelated errors for the filtered (’spaceless’) variables. There are different
spatial filtering techniques available, one of these methods is based on the
local spatial autocorrelation statistic Gi(δ) from Getis and Ord (1992), see
(3.6). Other techniques are based on an eigenfunction decomposition related
to the global spatial autocorrelation statistic Moran’s I (Getis and Griffith,
2002). The first method is equally effective but computationally simpler and
therefore described in more detail.

The ratio of the expected value of Gi(δ), given in (3.7), and the original
variable indicates the local magnitude of spatial dependence. The filtered
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observations are given by:

x̃i =
xiE[Gi(δ)]

Gi(δ)
=

xi

∑
i vij(δ)/(n− 1)

Gi(δ)
.

The purely spatial component of the variable is then given by (xi − x̃i).
If δ is chosen properly, the standardized value of Gi(δ) corresponding to x̃i

is insignificant (demonstrated by Getis and Griffith, 2002). This means: fil-
tering all variables (dependent and independent ones) in a regression model
removes the spatial dependence and allows one to use a conventional regres-
sion model in which the parameters are estimated by ordinary least squares.
A practical problem, when using this filtering technique is the choice of the
structure of the spatial link matrix V and the choice of the locality parame-
ter δ of the regional weighting scheme. One possibility to model the distance
decay is to use a negative exponential function (2.1) for the unstandardized
matrix U

uij = exp(−δdij), 0 ≤ δ ≤ ∞,

where dij denotes the (e.g. geographic) distance between the locations i and
j. The choice of the structure does not have decisive impact on the outcomes,
whereas the choice of δ is more problematic. Several methods to determine
δ are discussed in Getis (1995), one of these methods to choose δ properly is:
δ̃ = arg maxδ

∑
i |zGi(δ)|.

5.2 Estimation in Spatial Econometrics

Another possibility to deal with spatially dependent data is to use spatial
estimation techniques. In this case the spatial effect is not excluded from
the data, like in the spatial filtering approach, but adequately included in
the estimation. There are different estimation methods for spatial data, one
can e.g. use the Maximum Likelihood (ML) technique (first outlined by Ord,
1975), or a Spatial Two Stage Least Squares (S2SLS) method based on In-
strumental Variable (IV) estimation (see e.g. Kelejian and Robinson, 1993; or
Kelejian and Prucha, 1998), or based on a Generalized Method of Moments
(GMM) (Kelejian and Prucha, 1999).
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5.2.1 Spatial Two Stage Least Square Estimation

Kelejian and Prucha (1999) suggest to use the following procedure to estimate
a SAR model: For a spatial autoregressive model, given in equation (2.5):
y = Xβ + u and u = ρWu + ε, the covariance matrix is given by equation
(2.7): Ω(ρ, σ2) = σ2[(I − ρW)′(I − ρW)]−1. The auxiliary parameters ρ
and σ2 are estimated via the Generalized Method of Moments technique.
The Generalized Moments estimator of ρ and σ2 is a non-linear least squares
estimator:

(ρ̃, σ̃2) = arg min
ρ,σ2

{[Γ(ρ, ρ2, σ2)′ − γ]′[Γ(ρ, ρ2, σ2)′ − γ]}

where ρ ∈ [−a, a] with a ≥ 1 and σ2 ∈ [0, b], they are elements of the
vector (ρ, ρ2, σ2). Matrix Γ and vector γ are functions of the OLS residuals
derived from the moment conditions, and (Γ(ρ, ρ2, σ2)′ − γ) can be viewed
as a vector of residuals. Detailed specifications can be found in Kelejian
and Prucha (1999, p.8). The parameter β of the regression model is then a
Feasible Generalized Least Squares (FGLS) estimator:

β̃ = [X′Ω̃−1X]−1X′Ω̃−1y, (5.1)

where Ω̃ = Ω(ρ̃, σ̃2).

For more complex spatial models, i.e. models containing spatial lags in the
dependent variable, the exogenous variables, and the disturbances and addi-
tionally allowing for unknown heteroskdasticity in the innovations, a modified
Generalized Moments (GM) estimator for the spatial autoregressive param-
eter in the disturbances and an Instrumental Variable (IV) estimator for the
regression parameters of the model are given in Kelejian and Prucha (2006).

5.2.2 Maximum Likelihood Estimation

An alternative to the S2SLS technique from Kelejian and Prucha (1999) for
estimating spatial regression models is the Maximum Likelihood method,
see e.g. Anselin (1988) or Anselin (1999). It is based on the assumption of
normally distributed error terms of the spatial regression model. The joint
likelihood follows from the multivariate normal distribution of the dependent
variable. Considering e.g. a SAR error model (2.5) with u ∼ N(0,Ω(ρ)) and
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Ω(ρ) = σ2[(I− ρV)′(I− ρV)]−1, see (2.7), the log likelihood is given by:

lnL = −n

2
ln(2π)−n

2
lnσ2+ln|I−ρV|− 1

2σ2
(y−Xβ)′(I−ρV)′(I−ρV)(y−Xβ).

The ML estimates of β and σ2 are:

β̂ML = [(X− ρVX)′(X− ρVX)]
−1

(X− ρVX)′(X− ρVX),

and

σ̂2
ML =

1

n
(û− ρVû)′(û− ρVû),

with û = y −Xβ̂ML, respectively. The estimate for the spatial parameter ρ
follows a maximization of a concentrated likelihood function.

Both approaches, the ML estimation as well as the GMM based estima-
tion, can be used for spatial models. In the ML procedure the computation
of the logarithm of the determinant of the Jacobian is problematic, especially
in samples with a large number of observations. Larch et al. (2007) compare
the performance of the GMM based estimation technique from Kelejian and
Prucha (1999) and the ML technique with different approaches of comput-
ing the determinant of the Jacobian in huge samples. They conclude that
GMM as well as ML with a Monte Carlo estimator of the determinant of the
Jacobian are the most suitable methods for large sample sizes.

5.3 Measuring and Estimating Spatial Rela-

tions in Geostatistics

In the field of geostatistics the most widespread methods to measure spatial
relations are the covariance, the correlogram, and the variogram. Covariance
and correlogram show how the correlation behaves with the distance between
the points, and the variogram shows the dissimilarity between two different
located points Z(x) and Z(x + h) for a certain class of stochastic processes,
namely the intrinsic stochastic processes (definitions are given in chapter 2).

There is a close relationship between the Moran’s plot respectively the spatial
autocorrelation level and the variogram plot respectively the variogram. A
variogram plot or variogram cloud is a scatterplot with the distances on the
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horizontal- and the variogram values on the vertical axis, see section 5.3.3, it
is an important tool in geostatistics. A shallow slope of the variogram plot in-
dicates a strong positive spatial autocorrelation, whereas a steep slope of the
variogram plot denotes very small or zero spatial autocorrelation (Griffith &
Layne, 1999). In other words, the higher the positive spatial autocorrelation
the smaller the value of the variogram and vice versa.

5.3.1 Covariogram and Correlogram

Stationary random functions Z(x), see section 2.4, are characterized by their
mean

E[Z(x)] (5.2)

and their covariance, often referred as covariogram:

C(h) = E[{Z(x)− E[Z(x)]}{Z(x + h)− E[Z(x + h)]}], (5.3)

where h is a vector of the spatial lag or spatial separation. It holds that

C(h) = C(−h) and |C(h)| ≤ |C(0)|,

C(0) represents the covariance at lag 0 - this is simply the variance. Linked
to the covariance function is the so called correlogram function, which is
defined as

ρ(h) =
C(h)

C(0)
. (5.4)

The correlogram is a correlation coefficient between Z(x) and Z(x + h).

Covariance and correlogram depend on the length and the direction of vector
h, for isotropic processes (see section 2.4) they depend only on the length of
h (Chilès & Delfiner, 1999).

5.3.2 Theoretical Variogram

The theoretical variogram γ(h) describes the variation in space of an intrinsic
random function, see section 2.4. It shows how the dissimilarity between
Z(x) and Z(x + h) evolves with separation h (Chilès & Delfiner, 1999).
For intrinsic stochastic processes the mean of the increments (= difference
between values at pairs of points x and x + h: Z(x + h)−Z(x)) is invariant
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for any translation of a given vector h and it is assumed to be zero: E[Z(x+
h) − Z(x)] = 0 - this mean is often called drift, and the variance of the
increments have a finite value 2γ(h) = Var[Z(x + h)−Z(x)] which depends
only on the length and the orientation of h but not on the placement. One
half of this variance 2γ(h) is called theoretical variogram (or sometimes also
semi-variogram)

γ(h) =
1

2
E

[
(Z(x + h)− Z(x))2] . (5.5)

A theoretical variogram has the following characteristics:

(i) At the origin a variogram is zero by definition: γ(h) = 0

(ii) All values of a variogram are positive: γ(h) ≥ 0

(iii) Variograms are symmetric in space: γ(h) = γ(−h)

(iv) Variograms grow slower than |h|2: lim|h|→∞
γ(h)
|h|2 = 0

(v) Variograms can be derived from a covariance: γ(h) = C(0)−C(h)

Definitions can e.g. be found in Wackernagel (1998). This theoretical vari-
ogram has to be estimated in practice.

5.3.3 Variogram Cloud and Sample Variogram

In a variogram cloud the dissimilarities between pairs of sample values of
a regionalized variable z(x) are plotted against the (geographic) distance of
these pairs. For a separation h (which is a specified distance and direction)
of sample points, the dissimilarity between pairs of data values z(x) and
z(x + h) depends on the spacing and the orientation of the data pair. It is
given by

γ∗(h) =
1

2
(z(x + h)− z(x))2 . (5.6)

Thus, the variogram shows the semi-variance on the vertical axis and the ab-
solute distance between the values on the horizontal axis. In the variogram
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cloud the spread of values at different lags is shown, this might help to iden-
tify outliers or anomalies (Webster & Oliver, 2001).

Instead of the original dissimilarities given in (5.6) averages of these semi-
variances are used for the experimental variogram. Therefore classes of vec-
tors H are built. In a certain class Hk all nk point pairs that can be linked
by a vector h (which belongs to Hk) are included. The average semivariance
or experimental variogram is given by:

γ̂S(Hk) =
1

2Nk

Nk∑
i=1

[z(xi)− z(xi + h)]2 with h ∈ Hk. (5.7)

As a rule of thumb, vectors h used for the experimental variogram should
have a length lower half the diameter of the whole region (Wackernagel,
1998).

5.3.4 Regional Variogram

The best sample variogram of a region can be calculated if the whole domain
D is perfectly known. It is called regional variogram.

γR(h) =
1

2|D(h)|
∫

D(h)

[z(x + h)− z(x)]2 , (5.8)

where D(h) is the intersection of the domain D with a translation D−h, i.e.
x and x(h) belong to D ∩ Dh, and |D(h)| is the measure of D ∩ Dh. In
practice the value of the variable z(x) is only known for sparsely locations,
therefore z(x) is considered as realizations of random variables Z(x). Using
the random variables for formula (5.8) gives the randomized version of the
regional variogram. The expectation of it defines the theoretical variogram
γ(h), given in (5.5), see e.g. Wackernagel (1998).

5.3.5 Variogram Models

The experimental variogram gives a summary of the spatial relationships in
the data. For each lag h the calculated semivariance is an estimate of a
mean semivariance for that lag. As an estimate it is influenced by an error.
For each lag the sample variogram gives one estimate - this gives an discrete
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function, whereas the true variogram is a continuous function. One is not
interested in the point to point fluctuation but in the general trend. So, a
simple and sensible function is fit to the sample variogram (Webster & Oliver,
2001).

There are many different variogram models in use. The linear model
e.g. is the simplest one, the values on the vertical axis are γ(0) = 0 and
γ(h) = C0 + ph (for h > 0) respectively, parameter p gives the slope of
the line and C0 is the intercept, often called nugget effect, values on the
horizontal axis are the distances h between the pairs. Other commonly used
models are the generalized linear model, the spherical model, the exponential
model, the Gaussian model, the hole effect model, etc. Descriptions of these
models can e.g. be found in Clark and Harper (2000).

5.3.6 Upper-Austria SO2 Monitoring Network

This example stems from the field of environment pollution, namely air pol-
lution, it is one of the illustrating examples in Müller (2001). Data are taken
from the Upper-Austria sulphur dioxide (SO2) monitoring network. The
network includes 17 gauging stations, most of them are located in or near
the capital city Linz, which is also the main industrial region, see Figure
5.1. The observation sites are: Lenzing, Linz-Hauserhof, Linz-Urfahr, Traun,
Asten, Wels, Vöcklabruck, Perg, Steyr, Braunau, Linz-Kleinmünchen, Linz-
Ursulinenhof, Linz-ORF-Zentrum, Linz-24er-Turm, Linz-Berufsschulzentrum,
Steyregg-Weih, Schöeneben. The dataset contains 288 daily averages of SO2

concentrations in mg/m3 during the period from January 1994 until De-
cember 1995. Müller (2001) estimates a spherical variogram from data of
a typical day (1st of March 1994). The formula of a spherical variogram is
given by:

γS(h, θ) =





0 if h = 0

θ1 + θ2

[
3
2

(
h
θ3

)
− 1

2

(
h
θ3

)3
]

if 0 < h ≤ θ3

θ1 + θ2 if h > θ3

(5.9)

The parameters are estimated from the variogram cloud (see section 5.3.3).
The estimated parameters are θ̂1 = 0.164, θ̂2 = 0.323 and θ̂3 = 24.25, i.e. θ̂1

is the estimated nugget effect, θ̂1 + θ̂2 is the estimated sill value, which gives
the height of the variogram, and θ̂3 is an estimate for the range of influence.
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Figure 5.1: Upper-Austria SO2 monitoring network

5.3.7 Kriging

Kriging is an estimation method to find adequate estimates of values of re-
gionalized variables at locations that are not observed. The idea behind is,
to use weighted averages of the known values of the observed points and ad-
ditionally include the knowledge of the covariances or the variogram between
the values at the points involved. Kriging gives the best unbiased linear
estimates of values of regionalized variables, best in the sense of minimum
variance. Depending on the level of knowledge and the variable of interest
there are different kriging procedures on-hand. If the (true) mean of the
regionalized variable is known, one uses the so-called ’Simple Kriging’ to find
the best predictors of unobserved sample points. Whereas if the mean is
not known, one can estimate it via the procedure ’Kriging the mean’, and if
unknown values should be estimated, one runs ’Ordinary Kriging’ method.
Details about Kriging can be found in (nearly) all textbooks about geostatis-
tics, see e.g. Armstrong (1998) or Wackernagel (1998).
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Chapter 6

R&D Spillovers - An
Application in Spatial
Econometrics

The methods presented in the previous chapters are commonly used for ’clas-
sical’ spatial problems, in the sense that geo-referenced data are of interest,
i.e. the locational information is usually given in coordinates. The distances
or weights used in the analysis typically represent geographic distances or a
function of them. However, spatial methods are not restricted to this kind of
geo-referenced data, they can be used in much more cases, even ones that are
not obviously spatial. Some of the methods from the field of spatial econo-
metrics and the application to a ’non-spatial’ problem, namely the classical
’International R&D Spillover’ dataset from Coe and Helpman (1995), are
exemplified in the following.

6.1 R&D Spillovers Data

In 1995 Coe and Helpman published an article titled ”International R&D
Spillovers” (Coe & Helpman, 1995), which became quite famous in the eco-
nomic society. It was discussed, re-analysed and also criticised many times.
The main intention of this study was to answer the question whether coun-

2This chapter is part of a working paper published in the Research Report Series of
the Vienna University of Economics and Business Administration (Gumprecht, 2005),
furthermore it is published in the Austrian Journal of Statistics (Gumprecht, 2007a).
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tries can profit from the ’knowledge’ of their trade partner countries in the
sense that a higher level of ’knowledge’ has a positive effect on their own
productivity, i.e. whether there exists a spillover effect of the knowledge. In
general the ’knowledge’ of a whole country is delicate to define and even more
complicate to measure. Under the term ’knowledge’ of a country, Coe and
Helpman catch innovations and technical progress and measured it via the
R&D capital stock of a country. The problem of R&D spillover effects is well
known nowadays, none the less it is still not really understood and there are
different opinions whether such an R&D spillover phenomenon exists or not.

This chapter is structured as follows: The first part includes the non-spatial
analysis of Coe and Helpmans (1995) dataset, and some of the criticisms and
suggestions for improvement are discussed and the corresponding outcomes
are presented, the second part contains a spatial analysis of this problem.

6.1.1 ’Non-Spatial’ Analysis and Results

In the economic background of Coe and Helpmans (1995) analysis are the
theories of economic growth, that treat commercially oriented innovation
efforts as a major engine of technological progress and productivity growth
(Romer, 1990), (Grossman & Helpman, 1991). This means that on one
hand innovation profits from knowledge that results from R&D spending
and on the other hand innovation contributes to this stock of knowledge.
This means, the higher the R&D expenditures of a country, the higher is
the productivity growth. Coe and Helpman (1995) go one step further, and
claim that the productivity of a global economy depends on its own stock
of knowledge as well as the knowledge of its trade partners. They study
the extent to which a country’s productivity level depends on the domestic
and the foreign stock of knowledge. The domestic stock of knowledge is
quantified by the cumulative expenditures for R&D of a country, the foreign
stock of knowledge is quantified via an import-weighted sum of cumulated
R&D spending of the trade partners of a country. The importance of the
R&D capital stock is measured by the elasticity of total factor productivity
with respect to the R&D capital stock. Their empirical analysis is based on
a panel dataset that contains 22 countries (21 OECD countries plus Israel)
and 20 years (during the period from 1971 to 1990). The dependent variable
of the model is the total factor productivity (TFP), and the independent
variables are domestic R&D capital stock (DRD) and foreign R&D capital
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stock (FRD), all are constructed as indices with basis 1985 (1985=1). The
dataset is available on the homepage of Elhanan Helpman (Helpman, 2003),
which is accessible via the internet address:

http://post.economics.harvard.edu/faculty/helpman/data.html

In their paper Coe and Helpman (1995) used a variety of quite similar speci-
fications to model the effects of DRD and FRD on TFP. Only the first one is
selected to demonstrate the methods and results, the following conclusions,
however, are not limited to this particular case but rather apply to all of
the suggested models (for a more complete analysis see Gumprecht, 2003).
This first model contains three variables: TFP as the regressand, and DRD
and FRD as the regressors. The impact of domestic and foreign R&D ex-
penditures is supposed to be the same for all countries. The equation - with
regional index i and temporal index t - has the following form:

logFit = α0
it + αd

itlogSd
it + αf

itlogSf
it, (6.1)

where Fit denotes TFP, Sd
it denotes DRD and Sf

it stands for FRD, which is
defined as a bilateral import-share weighted average of the DRD of the trade
partners:

Sf
it =

∑

i 6=j

bijtS
d
jt (6.2)

where bijt denotes the bilateral import-shares of country i from country j
in period t, bijt 6= bjit and

∑
j bijt = 1. α0

it stands for the country-specific
intercepts. This means the intercepts are allowed to vary across countries.
This assumption was made for mainly two reasons: first, there may exist
country specific effects on productivity that are not included in the variables
of this model, and second, all variables are transformed into index numbers,
TFP is measured in the country specific currency whereas DRD and FRD are
measured in U.S. dollars. αd

it and αf
it denote the regression coefficients, αd

it

corresponds to the elasticity of TFP with respect to DRD, and αf
it determines

the elasticity of TFP with respect to FRD. According to standard practice
in time series literature Coe and Helpman (1995) used a panel data model
with fixed effects for their estimations. The aim of Coe and Helpman was to
estimate the long-run relationship between TFP and the domestic and foreign
R&D capital stocks. Therefore and because almost all of the data exhibit a
clear trend, they estimate cointegrated equations. The OLS estimate of such
a cointegrated equation is said to be ’super consistent’, that is, the estimate
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converges on the true parameter value much faster than in the case where
the variables are stationary (Stock, 1987). Coe and Helpman (1995) give the
following OLS estimates of the fixed effects model (6.1)

logFit = α0
it + 0.097logSd

it + 0.0924logSf
it. (6.3)

Coe and Helpman (1995) took these estimation results, both with a positive
regression coefficient, as a confirmation of their hypothesis that TFP of a
country depends on both domestic and foreign R&D capital stock, although
they did not calculate t- or p-values for the parameter estimators. Therefore
this model was estimated once again, now using the Least Squares Dummy
Variable (LSDV) method for the estimation and including the tests for the
parameter estimators. The coefficients are the same as the ones from Coe
and Helpman, the t-value for αd is 10.6834, the one for αf is 5.8673. Both
coefficients are positive and significant on a 1% level; the fit of the model
is moderate with a pseudo R2 = 0.5584, which is calculated as the squared
correlation between ŷit and yit. These results are given in column ’Model 2’
in the left part of Table 6.2.

6.1.2 Other Non-Spatial Approaches

Coe and Helpmans article was discussed many times and many suggestions
for improvement of the model and estimation were made. Kao, Chiang and
Chen (1999) e.g. criticized (among other points) that in spite of the super
consistency of the time-series estimator, the bias of the estimation can be
quite substantial for small samples and there is no reason to assume that
this bias becomes negligible by the inclusion of a cross section dimension
in panel data. Therefore they used different estimation methods for the in-
ternational R&D spillovers regression, namely the OLS, the Fully-Modified
(FM) and the Dynamic OLS (DOLS) estimation, and compared the empiri-
cal consequences from these methods. They claim that the DOLS estimation
is the best solution for this problem because in the given setting the DOLS
estimator exhibits no bias and is asymptotically normal. The DOLS estima-
tion of Coe and Helpmans fixed effects model, given in (6.1), can be found
in column ’Model 2’ in the left part of Table 6.3.

Another major issue in the panel data estimation literature is the choice
of the model, more precisely whether one should regard the region specific
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or other effects as random. This poses a valuable alternative to the fixed
coefficient model. In the context of R&D spillovers Müller and Nettekoven
(1999) suggest to use a random coefficient model for the R&D dataset. In
a random coefficient model the parameters are assumed to vary randomly
around a common mean. This model is well compatible with the data, nev-
ertheless the conclusions drawn from this estimation are contradictory to the
ones from Coe and Helpman (1995) in the sense that the estimate of the
FRD changes sign, although this is not statistically significant. Contrary to
Coe and Helpman’s conclusions from the fixed effects model, a random co-
efficients model indicates that there does not exist a significant effect of the
foreign R&D expenditures. See column ’Model 2’ in the left part of Table 6.4.

After a detailed examination of Coe and Helpmans (1995) work and the var-
ious critics of it, where the focus laid rather on the econometric model and
estimation technique than on the economic model and specification, the fol-
lowing changes and modifications were suggested by Gumprecht et al. (2004):
use of a random coefficient model and use of the DOLS technique for its es-
timation. The DOLS random coefficient estimation yields

logFit = α0
it + 0.3529logSd

it − 0.085logSf
it. (6.4)

The t-value for αd is 7.7946 and is significant on a 5% level, the one for αf

is -1.1866 and is not significant, and pseudo R2 = 0.9736. The results of the
panel cointegration model with random coefficient and dynamic regressors
do not support Coe and Helpman’s hypothesis, that the TFP of a country
depends on domestic and foreign R&D knowledge (measured by the R&D
expenditures). The effect of the knowledge of the trade partners of a country
is not significant. It seems from (6.4) that foreign R&D do rather not affect
the TFP of a country.

These different results do not help to find an answer to the original question,
whether the foreign R&D expenditures effect the productivity of a country.
Depending on the econometric model and estimation method one prefers, the
conclusions diverge.
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6.2 A Spatial Approach for the Analysis of

R&D Spillovers

A spatial analysis of the R&D spillover data can be examined if the countries
are regarded as regions - this can be done - and if an appropriate spatial link
matrix is available. A spatial link matrix measures connectivity or distance
between the regions, see chapter 2. The first thought of a distance matrix
is one of geographic distances. But, in a global economy not the geographic
distances but rather the trade intensity between two countries is relevant
for R&D spillover effects. Given the economical and theoretical background
of Coe and Helpmans (1995) analysis, and to be consistent with them, it
is self-evident to use the bilateral import shares (in year 1990) as a row-
standardized spatial link matrix. To define a kind of economic distance a
symmetric connectivity measure is needed, therefore a new quantity for the
trade intensity between two countries is defined, simply being the average of
the bilateral import-shares of these countries. The elements of the symmetric
spatial connectivity matrix are therefore calculated by:

vij =
bij + bji

2
for i 6= j,

where bij are the bilateral import-shares of country i from country j in period
1990, and by definition vij = 0 for i = j. It was assumed that the trade
intensity is the same for all periods, this means the same spatial link matrix
is used for all years. The economic distances between two countries are
simply the inverse connectivity:

dij =
1

vij

and by definition dii = 0. Now these distances can be used to produce a
’trade-intensity’ landscape by projecting all distances from the 21-dimensional
space to the 2-dimensional space. For this projection a Multidimensional
Scaling method is used. The squared sums of the distances between the
original and the projected points (the points represent the countries) are
minimized. This gives an approximation of all 231 distances between the 22
countries in the 2-dimensional space, and provides a quite good survey of the
relationships in the data set, Figure 6.1. Here the countries are quite evenly
scattered, nevertheless some clusters can be identified, e.g. Australia, New
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Zealand and Israel are quite far apart from the rest of the countries, this
means they have a small trade intensity with other countries and a relative
high trade intensity within their group. The U.S. are settled in the center, it
can be interpreted in the way that the U.S. are an important trade partner
for all countries.

Figure 6.1: Landscape based on trade-intensities between the countries

From the inverse trade intensity matrix a neighbourhood matrix can be eas-
ily constructed, e.g. via specifying a certain radius, and all countries which
lie within this area are regarded as neighbours. Doing this can help to see
how different values of the spatial parameter ρ influence the dependencies
between the countries. For a radius equal to 0.25 and ρ = 1 the U.S. have 17
neighbouring countries (not neighbours are: Austria, Belgium, Greece and
Portugal), if ρ = 0.5 the U.S. have just 8 neighbouring countries (Japan,
Germany, UK, Canada, Australia, Ireland, Israel and New Zealand), and if
ρ = 0.1 the only neighbour of the U.S. is Canada.
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6.2.1 Results of a Spatial Analysis

The spatial link matrix for the spatial regression model is the row-standardized
bilateral import-shares matrix V from Coe and Helpmans dataset. The first
step in the spatial analysis is to estimate a fixed effect model without any
foreign R&D spending and without any spatial structure:

logFit = α0
it + αd

itlogSd
it

which gives an α̂d
it = 0.1362 (significant on 1% level) and to calculate and

test Moran’s I for the residuals of this model for each period separately
(see section 3.1). As spatial link matrix the bilateral import shares (ma-
trix V) are used. Nearly all values are not significant (see Table 6.1), this
means there is no global spatial effect in the error term. Even if there is no
global spatial effect, local spatial effects can be included, and e.g. if there
are positive and negative local spatial effects in the data these effects can
compensate each other and the global Moran’s I test shows no significant
global spatial effect. If there is a spatial effect in the error term, one should
use an adequate estimation technique for the SAR regression model, given in
(2.5), e.g. the FGLS estimation from Kelejian and Prucha (1999), see section
5.2.1. This leads to similar results as the non-spatial analysis, the results
of the non-spatial model are given in column ’Model 1’ in the left part of
Table 6.2, the results of the spatial model are given in column ’Model 1’ in
the right part of Table 6.2. A fixed effect SAR model including the foreign
R&D spending (original definition from Coe and Helpman) is estimated to
compare the results with the ones from Coe and Helpman (1995), given in
(6.3). For the results see Table 6.2, column ’Model 2’ in the right part. DRD
as well as FRD have a positive and significant effect on TFP.

The foreign R&D spending can be regarded as spatially lagged domestic
R&D spending. To avoid the logarithms of the independent variables and as
all of the values of Sd

it are around one, a Taylor series approximation is used
for the logarithm. In general the Taylor series approximation of a function
f around a value x = a is given by:

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + ... +

f (n)(a)

n!
(x− a)n.

For the R&D data, logSd
it is substituted by the first two terms of the Taylor

series approximation:
logSd

it ' Sd
it − 1
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and log(
∑

i 6=j bijtS
d
jt) is substituted by

log(
∑

i6=j

bijtS
d
jt) '

∑

i6=j

bijtS
d
jt − 1.

This leads to the following fixed effects model with one spatially lagged ex-
ogenous variable:

logFit = α̃it
0 + αd

itS
d
it + αf

itbijtS
d
jt . (6.5)

The fixed effects change from α0
it to α̃it

0 = α0
it − αd

it − αf
it. Ignoring an

additional spatial effect that might be included in the error term, the fixed
effect panel regression, specified in (6.5), can be estimated by LSDV. This
simple approach gives positive and significant parameter estimators for DRD
as well as FRD.

logFit = α̃it
0 + 0.0673Sd

it + 0.1787bijtS
d
jt ,

see Table 6.3 column ’Model 3’ in the left part. Under the assumption of a
SAR error model, where a spatial effect is included in the error term, see for-
mula 2.5, a FGLS estimation based on GM estimators of the autoregressive
parameter and the noise variance leads to unbiased estimators. Such a spa-
tial estimation gives for the fixed effects model a positive effect of DRD and
a negative effect of FRD, and both of them are significant (column ’Model
3’ in the right part of Table 6.2). This result is neither in line with any
other result so far, nor with the common beliefs and theories in the economic
community. This result is dubious anyway, as all of the critics of the original,
non-spatial analysis of Coe and Helpman are also legitimate in the spatial
context. Therefore a dynamic random coefficients panel regression should be
executed.

The dynamic random coefficients model with a spatially lagged exogenous
variable and a spatial effect in the error term, estimated by FGLS yields

logFit = α̃it
0 + 0, 0809Sd

it + 0.0161bijtS
d
jt.

The parameter estimator for DRD is positive and significant on 10% level,
whereas the estimator for FRD is not significant (see column ’Model 3’ in
the right part of Table 6.5). This is in consensus with the non-spatial results
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and again in contrast with the original conclusions from Coe and Helpman
(1995). Nevertheless, the unusual high value of ρ̂ (=0.72) indicates over-
compensation. This is caused by the fact, that the spatial effect is already
included as a spatially lagged independent variable and an additional spatial
effect in the error term leads to an overcompensation.

Thus, the preferred method is the DOLS estimation of the random coeffi-
cients model with approximated variables, a spatially lagged independent
variable but no additional spatial effect in the error term, which yields

logFit = α̃it
0 + 0, 1252Sd

it + 0.1663bijtS
d
jt.

with pseudo R2 = 0.976. This model has the best fit of all examined models
and the result is in consensus with the original conclusions from Coe and
Helpman (1995).

6.3 Findings

In the R&D dataset an adequate spatial contiguity matrix is already given
by the bilateral import shares, even if it is not used in this way in the original
analysis. Anyway, it is quite simple to use these relationships for correcting
an additional spatial dependence that is not properly captured by the given
regressors. The aim of the analysis of the R&D spillovers dataset was to
answer the question, whether domestic and foreign R&D spending have an
effect on the total factor productivity of a country. Concerning domestic
R&D spending the answer is quite obvious, all different estimation tech-
niques (fixed effects- and random coefficients model) and both non-spatial
and spatial approach lead to the conclusion that domestic R&D spending
have a positive effect on the total factor productivity of a country. Concern-
ing the foreign R&D spending the answer is not that clear, because different
estimation techniques lead to different conclusions. Results for all different
models can be found in Tables 6.2, 6.3, 6.4 and 6.5. Some results support Coe
and Helpman’s (1995) conclusion that the foreign R&D expenditures have
a positive effect on the total factor productivity, some do not. Nevertheless
if one takes the dynamic random coefficient model with a spatially lagged
independent variable as the superior specification, the effect of foreign R&D
expenditures seems to be existent.
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Table 6.1: Moran’s I for residuals of the Fixed Effects model with indepen-
dent variable logSit; for all periods E[I] = −0.0476 and Var[I] = 0.0053.

Period Moran’s I z(I) Period Moran’s I z(I)
1990 0.0532 1.3818 1980 -0.0323 0.2101
1989 -0.1777 -1.7822 1979 -0.0860 -0.5263
1988 -0.1184 -0.9693 1978 -0.0426 -0.0694
1987 -0.0607 -0.1789 1977 0.0623 1.5064
1986 -0.0330 -0.1789 1976 -0.1337 -1.1788
1985 -0.0258 0.2993 1975 -0.0584 -0.1480
1984 -0.0702 -0.3088 1974 -0.0473 0.0042
1983 -0.0101 0.5144 1973 0.0198 0.9241
1982 0.0506 1.3451 1972 -0.0053 0.5795
1981 0.0910 1.8989 1971 -0.0328 0.2026

Table 6.2: Results for R&D Spillovers: Static Fixed Effects Model.

Static Fixed Effects, LSDV Static Fixed Effects, FGLS
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Origi- ln(drd) α̂ 0,1362 0,0970 0,1383 0,0961

nal t-ratio 21,3317 10,6834 22,2154 10,5393

Vari- p-value 0,0000 0,0000 0,0000 0,0000

ables ln(frd) α̂ 0,0924 0,0956
t-ratio 5,8673 6,1200
p-value 0,0000 0,0000

Taylor 1+drd α̂ 0,0673 0,1410

Series t-ratio 4,1483 6,1766
Approx- p-value 0,0000 0,0000

imation 1+drd*V’ α̂ 0,1787 -0,0498

of ln t-ratio 8,2235 -1,8678
p-value 0,0000 0,0312

Moran’s I z(I) 0,2022 0,3613 0,2551 -0,0430 0,1409 -0,5056
spatial p. ρ 0,1369 0,1636 0,2279
variance σ2 0,0025 0,0023 0,0019
Model Fit pseudo R2 0,5218 0,5584 0,6240 0,5420 0,5799 0,2685

pseudo adj.R2 0,4966 0,5339 0,6032 0,5179 0,5566 0,2280
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Table 6.3: Results for R&D Spillovers: Dynamic Fixed Effects Model.

Dyn. Fixed Effects, LSDV Dyn. Fixed Effects, FGLS
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Origi- ln(drd) α̂ 0,1461 0,1078 0,2124 0,0667

nal t-ratio 17,1916 13,6515 8,6564 2,3232

Vari- p-value 0,0000 0,0000 0,0000 0,0104

ables ln(frd) α̂ 0,0464 0,3831
t-ratio 3,7133 8,6208
p-value 0,0000 0,0000

Taylor 1+drd α̂ 0,1887 0,0227

Series t-ratio 27,2654 1,9333
Approx- p-value 0,0000 0,0270

imation 1+drd*V’ α̂ 0,0187 0,0800

of ln t-ratio 1,9464 5,9329
p-value 0,0262 0,0000

Moran’s I z(I) -0,5460 -0,3964 -0,6359 0,2580 0,4142 0,8376
spatial p. ρ -0,2180 -0,5336 -0,1424
variance σ2 0,0008 0,0005 0,0002
Model Fit pseudo R2 0,8050 0,8758 0,9468 0,6533 0,8151 0,9001

pseudo adj.R2 0,7919 0,8671 0,9431 0,6301 0,8021 0,8931

Table 6.4: Results for R&D Spillovers: Static Random Coefficients Model

Static Random Coeff., LSDV Static Random Coeff., FGLS
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Origi- ln(drd) α̂ 0,2443 0,2874 0,1826 0,2061

nal t-ratio 9,0446 7,3441 9,3238 6,9246

Vari- p-value 0,0000 0,0000 0,0000 0,0000

ables ln(frd) α̂ -0,0603 -0,0046
t-ratio -0,9155 -0,0949
p-value 0,1802 0,4622

Taylor 1+drd α̂ -0,0205 0,1871

Series t-ratio -0,4279 3,3408
Approx- p-value 0,3345 0,0005

imation 1+drd*V’ α̂ 0,3787 -0,2104

of ln t-ratio 5,6590 -3,4582
p-value 0,0000 0,0003

Moran’s I z(I) 0,4301 0,3630 0,4095 -0,2893 -0,2752 -0,3779
spatial p. ρ 0,4977 0,5042 0,3669
variance σ2 0,0061 0,0075 0,0034
Model Fit pseudo R2 0,9061 0,9135 0,9164 0,8792 0,8923 0,7054

pseudo adj.R2 0,9012 0,9087 0,9118 0,8728 0,8863 0,6891
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Table 6.5: Results for R&D Spillovers: Dynamic Random Coefficients Model

Dyn. Random Coeff., LSDV Dyn. Random Coeff., FGLS
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Origi- ln(drd) α̂ 0,2431 0,3529 0,1631 0,2522

nal t-ratio 9,1011 7,7946 7,4995 6,5971

Vari- p-value 0,0000 0,0000 0,0000 0,0000

ables ln(frd) α̂ -0,0850 -0,0160
t-ratio -1,1866 -0,2727
p-value 0,1181 0,3926

Taylor 1+drd α̂ 0,1252 0,0809

Series t-ratio 2,2895 1,4394
Approx- p-value 0,0113 0,0755

imation 1+drd*V’ α̂ 0,1663 0,0161

of ln t-ratio 2,1853 0,2508
p-value 0,0148 0,4011

Moran’s I z(I) -0,1107 -0,1043 -0,1908 0,0566 -0,0600 0,1842
spatial p. ρ 0,3208 0,3754 0,7199
variance σ2 0,0041 0,0071 0,0030
Model Fit pseudo R2 0,9378 0,9736 0,9760 0,8963 0,9564 0,9603

pseudo adj.R2 0,9337 0,9717 0,9743 0,8894 0,9534 0,9575
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Chapter 7

Optimal Design for Spatial
Data

The field of optimal design is quite large and for standard cases (especially
non-spatial problems) the theory of finding an optimal design is well es-
tablished. In general the problem is the following: A random variable y is
observed, and the distribution of y depends on some variables x controlled by
the researcher, some parameters θ which are fixed and unknown, and some
nuisance parameters ν also fixed and unknown. And the main question to be
answered is: Which N observations should be included in the design, (Silvey,
1980). In principle the procedure is to search for the design that optimizes
an adequate criterion function. In the theory of optimal design some para-
dox cases appear, e.g. it might happen that more observations worsen the
criterion. Problems occur when deviations from the standard assumptions
happen. A special case is - as always - the treatment of spatially correlated
data.

The topic of this chapter is the application and adaption of optimal design
theory to spatial datasets. The aim is to find optimal or nearly optimal de-
signs for experiments to detect spatial dependence that might be in the data.
The question to be answered is, how to optimally select predictor values to
detect the spatial structure - if it is existent, and how to avoid to spuriously
detect spatial dependence if there is no such structure. The starting point of

3The main parts of this chapter stem from an article from Gumprecht et al. (2007)
which was submitted in January 2007.
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this analysis are two different linear regression models: (1) an ordinary linear
regression model with i.i.d. error terms - the non-spatial case, and (2) a re-
gression model with a spatially autocorrelated error term, a so called spatial
autoregressive error model (SAR error model), see (2.5). The procedure can
be divided into two main parts: firstly, use of an exchange algorithm to find
the optimal design for the respective data collection process; for its evalu-
ation an artificial dataset was generated and used. Secondly, estimation of
the parameters of the regression model and calculation of Moran’s I which
is used as an indicator for spatial dependence in the data set. The method
is illustrated by applying it to a well-known case study in spatial analysis.
Furthermore it is applied to the SO2 monitoring network data from chapter
5 and to the R&D spillover data from chapter 6.

7.1 Motivation

When one is concerned with the analysis of spatial data, before all there
is the desire to detect whether there is any spatial dependence in them or
not. Should they be spatially independent, the respective statistical analysis
usually reduces to the application of a classical and well established toolbox.
Thus, the decision of whether one can confine oneself to this well understood
body of knowledge or whether one has to resort to the rather freshly devel-
oped methodologies of spatial statistics (cf. Anselin, 1988 or Cressie, 1993)
is a crucial element of any serious spatial investigation.

Besides the nature of the investigated process, what has the most influence
on the ability to isolate spatial effects are the locations in space, where the
data are collected, the so called spatial sampling design. There have been
made considerable efforts to make this design as efficient as possible for the
purpose of confirmatory spatial analysis, see e.g. Müller (2001). However, it
seems a little like negligence that this has never been considered for the very
first phase of a spatial study.

One explanation for this is that very frequently the sampling design is
fixed beforehand. The spatial data comes from a predefined lattice of loca-
tions or a given number of contiguous areas. Usually this data comes at no
or little cost at all design points/regions and thus there is no need for posing
the question: where (to measure)? However, this is not always the case, since
one can easily imagine that the data may come only at considerable costs
and the decision of which data to collect can be of great relevance. Moreover,
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it is well known that in spatial analysis it can be sometimes an advantage
not to employ the full potential data set (cf. the well known Smit’s paradox
in Smit, 1961).

The idea of this chapter is exemplified on a well-known case, namely the
Columbus, Ohio crime study from Anselin (1988), which became a classic
testground for spatial analysis. Data of the Columbus, Ohio crime dataset
stem from 49 contiguous planning neighbourhoods in Columbus, Ohio, USA,
see Figure 7.1. The dependent variable is an index of criminal activity, it
includes residential burglaries and vehicle thefts per thousand households in
a region, the explanatory variables are household income and housing values
in thousand dollars. The Moran’s plot for the dependent variable is given
in chapter 3, Figure 3.1. Although the example does not fit well for the
practical purposes of this topic, as the data are freely available for all the
neighbourhoods, it was chosen for its familiarity amongst the ’spatial com-
munity’. It is evident that one can easily replace the crime index by another
characteristic that may only be measured at a high cost and all the consid-
erations will continue to hold.

Figure 7.1: Neighbourhoods in Columbus, Ohio
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As a measure for the intensity of the spatial dependence and consequently
a valid test statistic for detecting its potential existence the Moran’s I statis-
tic (3.1) was chosen, although there is a considerable number of alternatives
available. However, the principal considerations are not affected by this
choice.

7.1.1 Spatial Link Matrices

In spatial modeling the sampling design primarily affects the spatial link ma-
trices (or spatial weighting matrices), which represent the spatial relation-
ships between the observations, see section 2.1 on page 5 for more details.
Two different types of spatial link matrices are used in the following. First,
use a function of the Euclidean distances between the locations of the obser-
vations, cf. formula (2.1),

gij = e−δdij − 1{i=j} (7.1)

with dij = ‖si−sj‖, where si and sj (i, j = 1, ..., n) are the coordinates of the
locations, δ is some decay parameter, and 1{i=j} is an indicator function for
i = j, it is included to obtain zeros on the main diagonal. By ξ = {s1, . . . , sn}
the collection of coordinates, the sampling design, defined on a design space
given by the set S, is denoted.
The other approach is the use of neighbourhood (contiguity) matrices, based
on the Queen’s criterion, cf. page 6.
For all computations the row-standardized versions of the spatial link matri-
ces, described in section 2.1.3, are used.

The idea of choosing the spatial weight matrix was differently used by Kooi-
jman (1976). He maximized Moran’s I by choosing an appropriate spatial
link matrix V (under certain constraints), to increase the robustness of the
test. In contrast to Kooijman (1976), the aim is to find the optimal locations
of the observations, it is not, to find a more robust test, but to better detect
a spatial effect that is potentially present in the data.

7.1.2 Models

The intention is to estimate an ordinary linear model and use the residuals
for the test of spatial dependence, i.e. estimation of the model y = Xβ + ε
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under the assumption ε i.i.d. The real data generating process, the true but
unknown status of the world, is one of the following:

H0, spaceless: y = Xβ + ε and ε i.i.d. (ordinary linear model)

HA, spatial: y = Xβ + u and u = ρVu + ε, and ε i.i.d. (SAR error
model, cf. 2.5)

where y is an n × 1 vector of the depending variable, X is an n × k matrix
of the regressors (which may also depend upon ξ), β is the k × 1 parameter
vector, ε is an n × 1 vector of i.i.d. errors, u is an n × 1 vector of spatially
correlated errors, ρ is the spatial autocorrelation parameter, and V which
depends upon ξ is the n× n spatial weight matrix.

Depending on the two examined cases, one either wants to accept or reject the
null hypothesis of spatial independence of Moran’s I test (see section 3.1.2)
to make a correct decision. The aim is to find an optimal or nearly optimal
design for a test strategy to receive either acceptation or rejection of the null
hypothesis for derivation of a model that matches the real status of the world.

The following discussion is restricted to Gaussian spatial processes, which
are based on normally distributed regression disturbances, see page 12. A
Gaussian spatial process is parameterized by the expected values of the ob-
servations E[y] = Xβ and their mutual covariance matrix, which denotes
the spatial interaction between the objects Cov(yy′) = E(yy′) = Ω(ρ), it
depends on the spatial autocorrelation parameter ρ. The disturbances are
N(0,Ω(ρ)) distributed, see e.g. Tiefelsdorf (2000).

7.2 Moran’s I
General issues about Moran’s I are given in section 3.1. As already men-
tioned, for a standard regression model it is crucial to know whether the
residuals are spatially dependent or not. If there is no spatial dependence
in the residuals, one can use standard estimation methods, like OLS, but if
the residuals show spatial dependence, one has to use special methods like
the S2SLS or the ML estimation technique (cf. section 5.2), because spatial
autocorrelation in the error term leads to biased estimates of the residual
variance and inefficient estimates of the regression coefficients when the OLS
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estimation method is applied, see e.g. Cliff and Ord (1981). Moran’s I (3.1)
of the OLS regression residuals ε̂ = (ε̂1, ..., ε̂n)′ is given by

I =
ε̂′ 1

2
(V + V′)ε̂

ε̂′ε̂
,

where V is a standardized spatial weight matrix (
∑n

i=1

∑n
j=1 vij = n), see

e.g. Tiefelsdorf (2000).

The Moran’s I test is here used to test positive spatial autocorrelation which
is the much more relevant case in real life (H0 : ρ = 0 against HA : ρ > 0).
Thus, from now on ρ ≥ 0 will be assumed. The z-transformed Moran’s
I, given in (3.4), is for normally distributed regression residuals and well-
behaved spatial link matrices under certain regularity conditions (see e.g.
Tiefelsdorf, 2000) asymptotically standard normally distributed,

z(I) =
I − E[I|H0]√

Var[I|H0]
∼ N(0, 1).

The exact small sample distribution of Moran’s I was obtained by Tiefels-
dorf and Boots (1995), but is not used here as it would be a restrictive
computational burden on the algorithm.

7.2.1 Status of the World: Spaceless

In the first case of section 7.1.2 a model under the assumption of spatial
independence is estimated, and the true model is of the same form. The
aim is then to accept the null hypothesis (=spatial independence). For the
approximate test the moments of Moran’s I under the null are required.
The moments, are given in section 3.1. Under the assumption of spatial
independence, expected value (3.2) and variance (3.3) of I under the null
are:

E[I | H0] =
tr(K)

n− k

and

Var[I | H0] =
2{(n− k)tr(K2)− tr(K)2}

(n− k)2(n− k + 2)

respectively, see Henshaw (1966).
The null case is the simpler one, there is no spatial effect in the data, data
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follow an ordinary linear model, the correct model is estimated and the null
hypothesis of no spatial dependence should be accepted. The intention is to
find an optimal design which gives the best locations for the observations in
the sense that the rejection of the null hypothesis is minimized.

7.2.2 Status of the World: Spatial Dependence

Under the alternative the (wrongly) estimated model is still: y = Xβ+ε and
ε i.i.d. but now the true assumed (but unknown) data generating process is
a SAR error process (2.5):

y = Xβ + u, u = ρVu + ε

with ε i.i.d. Here the spatial dependence appears in the form of a spatially
lagged error term u. This is the SAR error model, the parameter ρ is a
spatial autoregressive coefficient. This model can be transformed into a form
with i.i.d. error terms, y = ρVy + Xβ − ρVXβ + ε, being an exposition
with a spatially lagged dependent variable Vy and a set of spatially lagged
exogenous variables VX. The variance-covariance matrix Ω(ρ) of the error
terms, given in (2.7) on page 13, is

Ω(ρ) = E[uu′] = σ2[(I− ρV)′(I− ρV)]−1.

The model is estimated via OLS and the residuals ε̂ = y − Xβ̂ are used
for the calculation of Moran’s I. If the real data generating process follows
a SAR error process, the aim is to reject the null hypothesis of no spatial
dependence. The task is to maximize the power of the test, i.e. the probability
to reject the null hypothesis given the alternative (spatial dependence). For
the normal approximation again only the conditional moments are needed.
The conditional expectation of Moran’s I can be evaluated by the improper
integral

E[I|HA] =

∫ ∞

0

n−k∏
i=1

(1 + 2λit)
− 1

2 ·
n−k∑
i=1

h∗ii
1 + 2λit

dt , (7.2)

where h∗ii are the diagonal elements of matrix H = P′AP with A = Ω′ 1
2M1

2
(V+

V′)MΩ
1
2 , and P is the matrix of the normalized eigenvectors of matrix

B = Ω′ 1
2MΩ

1
2 , the eigenvalues and their associated eigenvectors are re-

sequenced so that 0 < λ1 ≤ λ2 ≤ ... ≤ λn−k. The variance of I under
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the alternative is given by

Var[I|HA] = E[I2|HA]− E[I|HA]2, (7.3)

where

E[I2|HA] =

∫ ∞

0

[
n−k∏
i=1

(1 + 2λit)
− 1

2

]
·
[

n−k∑
i=1

n−k∑
j=1

h∗iih
∗
jj + 2(h∗ij)

2

(1 + 2λit)(1 + 2λjt)

]
t dt

(7.4)
and E[I|HA] is given in equation (7.2). The upper truncation points for
the integrals can be approximated by a formula given by De Gooijer (1980).
Following him leads to an approximation of the upper bound for the expected
value (7.2) of

[
(n− k)hmax

2λ
n−k

2
1

(
n− k

2
− 1

)
1

ε

] 1
n−k

2 −1

= τ1, (7.5)

where hmax is the biggest absolute value of the elements of the diagonal of
matrix H. An approximation of the upper bound for E[I2|HA], (7.4), is

[
3(n− k)2h

(2)
max

(2λ1)
n−k

2

(
n− k

2
− 2

)
1

ε

] 1
n−k

2 −2

= τ2, (7.6)

with h
(2)
max denoting the biggest absolute value of the elements of matrix H.

Tiefelsdorf (2000) suggests to use 1
n−k

∑n−k
i=1 λi instead of λ1.

The calculations of (7.2) and (7.4) are based on a GAUSS-code implemented
by M. Tiefelsdorf and the results were checked with a code in Mathematica
programm implemented by J. Rodŕıguez-Dı́az.

7.3 Optimal Design Considerations

7.3.1 A Criterion

In both cases, where a linear regression model is estimated and the corre-
sponding residuals are used to calculate Moran’s I test, the aim, whether
to accept or reject the null hypothesis of no spatial autocorrelation in the
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error term, depends on the true data generating process. As the true pro-
cess is unknown, a general design criterion Ψ (which does not depend on
the knowledge of the true data generating process), is needed. The aim is
to minimize the probability that, given the alternative, the Moran’s I test
accepts the null hypothesis of no spatial autocorrelation. The test statistic
Z = I−E(I|H0)√

Var(I|H0)
is asymptotically normally distributed, and therefore the aim

is:

minHA
P

(
I − E(I|H0)√

Var(I|H0)
≤ Φ−1(1− α)

)
.

This leads to

minHA
P

(
I ≤ Φ−1(1− α)

√
Var(I|H0) + E(I|H0)

)
.

Using the z-transformation for I under the alternative gives I−E[I|HA]√
Var[I|HA]

which

is also asymptotically standard normal distributed. The final criterion to be
maximized is therefore given by

Ψ(ξ) = 1− Φ

(
Φ−1(1− α)

√
Var[I|H0] + E[I|H0]− E[I|HA]√

Var[I|HA]

)
, (7.7)

where Φ denotes the cdf of the standard normal distribution. The maximiza-
tion of Ψ over ξ ∈ S gives the final optimal locations of the observations
and thus maximizes the power of the Moran’s I test. To calculate Ψ, the
expected value (3.2) and the variance (3.3) of I under the null hypothesis,
and the expected value (7.2) and the variance (7.3) of I under the alternative
hypothesis are needed. For the calculation of E[I|HA] and Var[I|HA] one has
to assume a particular spatial process.
Unfortunately the given criterion is not convex and thus the well developed
optimum design theory (cf. Silvey, 1980) can not be employed and algorith-
mic approaches are needed.

7.3.2 Design Algorithms

Full enumeration
Evidently, the global optimal design can be found by evaluating all possible
designs, i.e. in an m-point grid there are

(
m
r

)
possible r-point designs, r goes

from 4 + k + 1 to m, where k is the number of the regressors in the model.
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This minimum number of points in a design follows from the approximation
of the upper truncation points for the integrals (7.5) and (7.6). The number
of possible designs increases very fast with the size of the grid. This leads
to a high runtime, as the numerical integration needs some time. From this
point of view it is worth to notice that not all possible designs are different
in the sense that they have different criterion values. Some of the r-point
designs are only rotations, reflections or translations of other r-point designs,
and therefore give the same value of the criterion Ψ. The respective designs
will be called ’symmetric’ in the following. To avoid calculating Ψ for those
designs which are known to be symmetric to others, an appropriate symmetry
check can be done before the computation of Ψ. From formula (7.2) and
(7.4) it can be seen, that designs give the same Ψ if the absolute value of the
elements of the lower triangular matrix of H, and vector λ are the same. For
illustrating this problem a regular 9-point grid is assumed, and the model is
a regression on the intercept. The number of all possible 8-point designs is(
9
8

)
= 9, they are illustrated here:
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Some of them are rotations or reflections of others, really different, in the
sense that they lead to different criterion values Ψ, are only the following
three designs. All others have the same values |hij| and λ and therefore the
same Ψ like one of these three:
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For evaluating Ψ two integrals are needed, one for the expected value (7.2)
and an additional one for the variance (7.4) under the alternative. Ignoring
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symmetric designs means: there is only need to compute 2 · 3 = 6 numerical
integrals instead of 2 · 9 = 18.
The implementation of this symmetry check improves the runtime of the
algorithm as the calculations of the numeric integrals (7.2) and (7.3) take
quite a long time. A further advantage is, that the number of the ’really’
different designs, different in the sense of non-symmetric, can be counted. A
disadvantage is the high memory capacity needed for the symmetry check.
Nevertheless, the number of non-symmetric designs, that have to be eval-
uated, becomes large if the number of points in the grid increases, e.g. in
an intercept regression model on a 25-point grid there are 1081575 different
17-point designs and still 108963 are non-symmetric. The complete evalua-
tion of all ’really’ different designs can only be done for very small grids and
therefore is not relevant for practical use.

Simple search algorithm
A possibility for finding a ’nearly’ optimal design is the use of a simple search
algorithm. This algorithm is much faster than the full enumeration algorithm
as for the r-point design the number of evaluated (r − 1)-point designs is r.
This algorithm can also be done in an acceptable time for quite large grids.
The procedure is quite simple:

1. Start with an initial design ξ0 = S, called ’base’ design, and compute
Ψ0. Thus in the first iteration the number of points r in ξ0 is m (= full
design).

2. Delete each point, one at a time, to get (r−1) designs ξe, and compute
Ψe. The symmetries can be checked before the criterion is calculated.

3. Take the best (r− 1) design ξe, i.e. the design with the largest Ψe, and
put it as new base design.

Go to step 2.

The algorithm stops if r = (4 + k + 1). The r-point design that gives the
largest Ψ is the ’nearly’ optimal one. The disadvantage of this algorithm
is, that once an r-point design is chosen, all smaller r − i point designs are
restricted to this set of points, it can happen quite easily that one is trapped
in a local maximum. To avoid this one could employ alternative methods of
stochastic optimization such as in Haines (1987).
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Fedorov exchange algorithm
As an alternative and sort of compromise, an exchange type algorithm based
on Fedorov (1972) can be used. The ’nearly’ optimal r-point design, when
equal points in the design are not allowed, is found via an exchange type
procedure. The aim is to improve the design by exchanging points from it,
one at a time, as follows:

1. Start with an initial r-point design, ξ0 = {s1, . . . sr}, the points are
chosen at random and should be different. Compute the design criterion
Ψ0 for the initial design.

2. Take one point si from ξ0 (it is again called ’base’ design) and exchange
it with a point not in ξ0 - these points are called candidate points,
the set of all candidate points is ξc = {S|ξ0} = {sr+1, . . . sm}. Do
this for all candidate points in ξc and all points in the base design ξ0

and compute Ψe for each different combination (design). Before the
criterion is computed, the symmetry check based on H and λ can be
done.

3. Get the best r-point design (ξe), i.e. the design with the largest Ψe,
from the previous exchange step and put it as new base design ξ0.

Go to step 2.

The algorithm stops if there is no further improvement in the criterion, i.e.
if Ψe is worse than Ψ of the base design. In this way ’nearly’ optimal r-point
designs are computed for r = 4 + k + 1, ..., m, the overall best design is the
best one of all r-point designs found by the algorithm. A refinement of this
algorithm, which could be useful also in this context is the so-called coordi-
nate exchange algorithm by Meyer and Nachtsheim (1995).

Algorithms that evaluate many different designs, like the ones given here,
which are chosen by random and/or via exchanging points, will most prob-
ably also lead to designs with far-off objects (see the discussion in chapter
4). In case of designs with far-off observations, excluding the far-off object,
i.e. use treatment (e), can make an algorithm much faster, designs which in-
clude far-off objects do not have to be evaluated because they give the same
criterion value as the ones without this far-off point. As this treatment is
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not recommended, treatment (s), which leads to a more conservative test, is
used in the following.

7.4 Examples

7.4.1 Artificial Dataset

An OLS regression model with i.i.d. error terms is estimated. The OLS resid-
uals are used to calculate Moran’s I and its expected values and variances
under the null and under the alternative, see (3.1), (3.2), (3.3), (7.2) and
(7.3), which are needed for evaluating the design criterion Ψ (7.7). The best
design is the one with the largest Ψ:

ξ∗ = arg max
ξ∈S

Ψ(ξ). (7.8)

Since Φ is a monotonous function one needs to minimize its argument only,
for computational simplicity. The observations are taken on a regular 25-
point grid [−1; 1]2. The simple search and the Fedorov exchange algorithm,
described in the previous section, are used. The null hypothesis is spatial
independence, the alternative hypothesis is spatial dependence with a spatial
autoregressive parameter ρ = 0.5.

Regression on Intercept

The considered model is a regression of y on an intercept: y = 1nβ + ε.
It is assumed that all observations derive from different locations. The full
25-point design (with numbering of points) is simply:
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The spatial link matrix Vc is a row-standardized contiguity matrix (based
on Queen’s criterion, see chapter 2), neighbours of point number i are given
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in row i, the spatial link matrix Vd is a row-standardized distance matrix
based on (7.1) with parameter δ = 5.76. This setting gives the same criterion
value for the full design as in case of using Vc. The correlation structure with
corresponding exponential function is displayed in Figure 7.2.

Vc =




0 0.33 0 · · · 0
0.20 0 0.20 · · · 0
0 0.20 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




,

Vd =




0 0.402 0.023 0.001 · · · 0.000
0.262 0 0.262 0.015 · · · 0.000
0.014 0.256 0 0.256 · · · 0.000
0.001 0.015 0.262 0 · · · 0.000

...
...

...
...

. . .
...

0.000 0.000 0.000 0.000 · · · 0




Figure 7.2: Correlation for a 25 point grid

Simple Search Algorithm: Executing the Simple Search algorithm
gives, for a distance based spatial link matrix, a 16-point design with four
points in each corner as the best one (Ψ = 0.603). Using a neighbourhood
matrix leads to the same ’optimal’ design (with Ψ = 0.659).
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Fedorov exchange algorithm: Running the Fedorov exchange algo-
rithm for this example finds the same best design when the spatial link ma-
trix is based on a distance matrix (Ψ = 0.603). For the neighbourhood-based
spatial link matrix a 12-point design is the best one (Ψ = 0.720):
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The development of the ’nearly’ optimal designs found by the search- and
the exchange algorithm can be seen in Figure 7.3.

Figure 7.3: 25-Point grid, simple search & exchange algorithm, contiguity
and distance matrices

Linear Trend Model

Now the considered model is a regression of y on an intercept and on the
horizontal s1- and vertical s2 coordinates of the observations: y = 1nβ0 +
s1β1 + s2β2 +ε. For this example again the artificial dataset is used and the
simple search and the Fedorov exchange algorithm are executed for both a
distance based and a neighbourhood based spatial link matrix with param-
eters ρ = 0.5 and for the distance based link matrix parameter δ = 0.543
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respectively. Here the best designs (12 points) coincide, the criteria are dif-
ferent, for the contiguity matrix Ψ = 0.625 whereas for the distance matrix
Ψ = 0.462.
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Figure 7.4: 25-Point grid, simple search & exchange algorithm, contiguity
and distance matrices

7.4.2 Columbus Crime Data

Data for this example stem from the classical Columbus Crime dataset from
Anselin (1988), see section 7.1 and Figure 7.1. The spatial weight matrix V is
the row-standardized neighbourhood matrix, and the spatial autoregressive
parameter ρ = 0.562, this value is the Maximum Likelihood estimator of a
linear regression model with an intercept, the two regressors and a spatially
dependent error term, for the estimation the contiguity matrix was used, see
Anselin (1988). The dependent variable ’crime’ is spatially autocorrelated
with Moran’s I of 0.5109 which is significant with z(I) = 5.675.
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The optimal design search is based on the regression model with only an
intercept. The idea behind this approach is, that of course normally one
looks for the design first, and then data is collected on the corresponding
locations, i.e. one does not know the values of the regressors in the design
generating process. Running the Fedorov exchange algorithm gives a ’best’
design with 29 locations with a criterion value Ψ = 0.983, and a Moran’s
I = 0.417 and z(I) = 1.914 which is significant on the 5%-level, see Figure
7.5. The ’best’ design found by the simple search algorithm is one with
31 locations with Ψ = 0.973, and I = 0.519 with z(I) = 2.705, which is
significant on the 1%-level, see Figure 7.5, the dark grey locations are the
ones which were selected by both algorithms. It is remarkable that the border
regions are included in both cases. The improvement over the full design is
for both the Fedorov- and the simple search algorithm 22%. The values for
design criteria Ψ for all different numbers of locations can be found in Figure
7.6.

Figure 7.5: Left: Simple search. Right: Fedorov exchange algorithm.

7.4.3 Upper-Austria SO2 Monitoring Network

This example deals with the Upper-Austria SO2 monitoring network from
section 5.3. The full design are the 17 observation sites presented in Fig-
ure 5.1. The estimated parameters of the spherical variogram (5.9), θ̂ =
(0.164, 0.323, 24.25)′, are used to build a spatial weight matrix U, constructed
via the inverse function. Using this spatial dependence structure leads to

80



Figure 7.6: Columbus crime data, simple search & exchange algorithm, con-
tiguity matrix

three far-off locations: Steyr, Braunau and Schöneben, these observations
are zero-weighted because their distances to all other objects are greater
than θ̂3. For these objects treatment (s) as well as treatment (ν) with dif-
ferent values of ν (0.01, 0.001, 0.0001 and 0.00001) are used, see chapter 4.
In the search- and exchange algorithms the corresponding row-standardized
spatial link matrices V are used. The regression model of the optimal design
procedure is an intercept only model. As an estimate of the spatial autore-
gressive parameter ρ, which is needed for the alternative, GM estimates are
used (see section 5.2). Depending on the treatment of the far-off objects, esti-
mates ρ̂ and the criterion values Ψ differ, treatment (s) gives ρ̂ = 0.2437 and
Ψ = 0.2510, treatment (ν) gives for ν = 0.01, 0.001, 0.0001, 0.00001 values
of ρ̂ equal to 0.6625, 0.4409, 0.3825 and 0.3753 and criterion values Ψ equal
to 0.4451, 0.2634, 0.2225 and 0.2177. Nevertheless, the optimal design is al-
ways the same 10-point design, in Figure 7.7 these points are the filled black
ones. The best locations are: Linz-Hauserhof, Wels, Vöcklabruck, Steyr∗,
Braunau∗, Linz-Kleinmünchen, Linz-ORF-Zentrum, Linz-Berufsschulzentrum,
Lenzing and Schöneben∗, the ∗-observations are far-off ones. Here it can be
seen that treatment (e) should not be used as it would exclude these objects,
even they are part of the optimal design.
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Figure 7.7: Upper-Austria SO2 monitoring network

7.4.4 R&D Spillovers

The last example concerns again the R&D Spillover dataset from Coe and
Helpman (1995), see also chapter 6. For the optimal design procedure not
the whole panel dataset but only year 1990 was regarded. The spatial weight
matrix is the row-standardized bilateral import-shares matrix in year 1990.
The final design depends on the assumed value of ρ, i.e. the concrete form
of the alternative, see section 7.3.1. To see the influence of the choice of
ρ, two different values (ρ = 0.1 and ρ = 0.5) are assumed, and for both of
them the optimal design is calculated with the Fedorov exchange algorithm
as well as the simple search algorithm. For ρ = 0.5 Fedorov exchange- and
simple search algorithm give the same optimal design with a criterion value
Ψ = 0.334. It includes the following 13 countries: USA, Canada, Australia,
Austria, Denmark, Finland, Israel, New Zealand, Norway, Portugal, Spain,
Sweden and Switzerland. Figure 7.8 shows again the ’economic’ landscape
(Figure 6.1) and the optimal design countries are singled out.
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Figure 7.8: Economic landscape with optimal design points

For assumption ρ = 0.1, Fedorov exchange- and simple search algorithm lead
to different designs, although the number of points is in both design equal to
nine. The exchange type algorithm suggests to use USA, Canada, Australia,
Denmark, New Zealand, Norway, Portugal, Spain and Sweden, the criterion
value Ψ is equal to 0.082. The simple search algorithm leads to the coun-
tries USA, Canada, Australia, Belgium, Denmark, The Netherlands, New
Zealand, Norway and Sweden, here the criterion is a bit smaller, Ψ = 0.081.

7.5 Findings

This new course of action combines the fields of optimal design theory and
spatial analysis (via the design criterion). It helps to select the best locations
for an empirical analysis of spatial data, especially if the data collecting pro-
cess is expensive and/or time-demanding, and there is no or little knowledge
about a potential spatial dependence. Using this procedure can lead not only
to more economic but also more efficient networks.
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Chapter 8

Conclusions

In this thesis different aspects and methods for analysing spatial data are
shown. The great generality of spatial methods is illustrated by applying
some of the techniques to various examples that stem from the field of geo-
statistics as well as spatial econometric, and also to one dataset which is not
obviously spatial in the first view. This ’non-spatial’ problem is about R&D
spillovers, which is a well known and often analysed and re-analysed topic
in economics. The spatial approach supports the theory that R&D spillover
effects exist. Nevertheless there are still questions and aspects left open, e.g.
whether one should use other models or better definitions of the variables.

This work also included a theoretical discussion of a special class of spa-
tial datasets, namely ones with observations that are far apart from all others
(’far-off’ objects). Three possible methods of treating such observations are
suggested and the influence on Moran’s I test is worked out. A straight-
forward extension of this discussion would be to analyse the effect of more
than one far-off object, and the influence of such objects on other spatial
autocorrelation measures e.g. the Getis statistic.

The last part of the thesis deals with optimal design theory. Here a new
criterion, especially useful for spatial datasets is presented. It is an instru-
ment which helps to collect data at the ’best’ locations, best in the sense that
the true and unknown data generating process can be detected in the sample
design. Due to the generality of this approach there are many directions for
improvements available. Evidently one can try other algorithmic approaches
to decrease the runtime or the memory capacity needed. An other fruitful
extension might be to use other spatial autocorrelation test statistics in the
design criterion.
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