Brian E. Davies and Josef Leydold and Peter F. Stadler
Discrete Nodal Domain Theorems

Original Citation:

This version is available at: http://epub.wu.ac.at/1674/
Available in ePub^WU: July 2006

ePub^WU, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU.
Discrete Nodal Domain Theorems

E. Brian Daviesa, Josef Leydoldb, and Peter F. Stadlerc,d

aDepartment of Mathematics, King's College, Strand, London WC2R 2LS, UK
Phone: **44-(0)20 7848 2698 Fax: **44-(0)20 7848 2017
E-Mail: E.Brian.Davies@kcl.ac.uk
URL: http://www.mth.kcl.ac.uk/staff/eb_davies.html

bDept. for Applied Statistics and Data Processing, University of Economics and Business Administration, Augasse 2-6, A-1090 Wien, Austria
Phone: **43 1 31336-4695 Fax: **43 1 31336-738
E-Mail: Josef.Leydold@statistik.wu-wien.ac.at
URL: http://statistik.wu-wien.ac.at/staff/leydold

cInstitute for Theoretical Chemistry and Molecular Structural Biology
University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
Phone: **43 1 4277 52737 Fax: **43 1 4277 52793
E-Mail: studla@tbi.univie.ac.at
URL: http://www.tbi.univie.ac.at/~studla

dThe Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe NM 87501, USA
E-Mail: stadler@santafe.edu

Abstract

We give a detailed proof for two discrete analogues of Courant's Nodal Domain Theorem.

1 Introduction

Courant's famous Nodal Domain Theorem for elliptic operators on Riemannian manifolds (see e.g. [1]) states

If f_k is an eigenfunction belonging to the k-th eigenvalue (written in increasing order and counting multiplicities) of an elliptic operator, then f_k has at most k nodal domains.

When considering the analogous problem for graphs, M. Fiedler [4, 5] noticed that the second Laplacian eigenvalue is closely related to connectivity properties of the graph, and showed that f_2 always has exactly two nodal domains. It

13 September 2000
is interesting to note that his approach can be extended to show that \(f_k \) has no more than \(2(k - 1) \) nodal domains, \(k \geq 2 \) [7]. Various discrete versions of the Nodal Domain theorem have been discussed in the literature [2, 6, 8, 3], however sometimes with ambiguous statements and incomplete or flawed proofs. The purpose of this contribution is not to establish new theorems but to summarize the published results in a single theorem and to present a detailed, elementary proof.

2 Preliminaries

Consider a simple, undirected, loop-free graph \(\Gamma \) with finite vertex set \(V \) and edge set \(E \). We write \(N := |V| \) and \(x \sim y \) if \(\{x, y\} \in E \). We introduce a weight function \(b \) on the edges of \(\Gamma \), conveniently defined as \(b : V \times V \rightarrow \mathbb{R} \) such that \(b(x, y) = b(y, x) > 0 \) if \(\{x, y\} \in E \) and \(b(x, y) = 0 \) otherwise, and a potential \(v : V \rightarrow \mathbb{R} \). We will consider the Schrödinger operator

\[
\mathcal{H} f(x) := \sum_{y \sim x} b(x, y) [f(x) - f(y)] + v(x)f(x).
\]

We shall assume that \(\Gamma \) is connected throughout this contribution.

The Perron-Frobenius theorem implies that the first eigenvalue \(\lambda_1 \) of \(\mathcal{H} \) is non-degenerate and the corresponding eigenfunction \(f_1 \) is positive (or negative) everywhere. Let

\[
\lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_{k-1} \leq \lambda_k \leq \lambda_{k+1} \leq \cdots \leq \lambda_N
\]

be the list of eigenvalues of \(\mathcal{H} \) arranged in non-decreasing order and repeated according to multiplicity. Given \(k \) let \(\overline{k} \) and \(\underline{k} \) be the largest and smallest number \(h \) for which \(\lambda_h = \lambda_k \), respectively. Let \(f_k \) be any eigenfunction associated with the eigenvalue \(\lambda_k \). Without loss of generality we may assume that \(\{f_i\} \) is a complete orthonormal set of eigenfunctions satisfying \(\mathcal{H} f_i = \lambda_i f_i \). Since \(\mathcal{H} \) is a real operator, we can take all eigenfunctions to be real.

In the continuous setting one defines the nodal set of a continuous function \(f \) as the preimage \(f^{-1}(0) \). The nodal domains are the connected components of the complement of \(f^{-1}(0) \). In the discrete case this definition does not make sense since a function \(f \) can change sign without having zeroes. Instead we use the following

Definition 1 \(D \) is a weak nodal domain of a function \(f : V \rightarrow \mathbb{R} \) if it is a maximal subset of \(V \) subject to the two conditions

(i) \(D \) is connected (as an induced subgraph of \(\Gamma \));
(ii) if \(x, y \in D \) then \(f(x)f(y) \geq 0 \).

\(D \) is a strong nodal domain if (\(\text{ii} \)) is replaced by

(\(\text{ii} \')) if \(x, y \in D \) then \(f(x)f(y) > 0 \).

In this contribution we are only interested in nodal domains of eigenfunctions \(f_k \) of the Schrödinger operator \(\mathcal{H} \). In the following, the term “nodal domain” will always refer to this case.

The following properties of weak nodal domains are elementary:

(a) Every point \(x \in V \) lies in some weak nodal domain \(D \).
(b) If \(D \) is a weak nodal domain then it contains at least one point \(x \in V \) with \(f_k(x) \neq 0 \) and \(f_k \) has the same sign on all non-zero points in \(D \). Thus each weak nodal domain can be called either “positive” or “negative”.
(c) If two weak nodal domains \(D \) and \(D' \) have non-empty intersection then \(f_k|_{D \cap D'} = 0 \) and \(D, D' \) have opposite sign.

Note that (a) need not hold for strong nodal domains, and (c) is replaced by: The intersection of two distinct strong nodal domains is empty.

3 Weak and Strong Nodal Domain Theorem

The main result of this contribution is

Theorem 2 (Nodal Domain Theorem) The eigenfunction \(f_k \) has at most \(k \) weak nodal domains and at most \(k' \) strong nodal domains.

Proof. The proof of the Nodal Domain Theorem is based upon deriving a contradiction from

- **Hypothesis W:** \(f_k \) has \(k' \) > \(k \) weak nodal domains, and
- **Hypothesis S:** \(f_k \) has \(k' \) > \(k' \) strong nodal domains,

respectively.

We call the domains \(D_1, D_2, \ldots, D_{k'} \) and define

\[
g_i(x) := \begin{cases} f_k(x) & \text{if } x \in D_i \\ 0 & \text{otherwise} \end{cases}
\]

(3)

for \(1 \leq i \leq k' \). None of the functions \(g_i \) is identically zero. Since they have disjoint supports their linear span has dimension \(k' \). It follows that there exist
constants $\alpha_i \in \mathbb{R}$ such that

$$g := \sum_{i=1}^{k'} \alpha_i g_i$$

is non-zero and satisfies $\langle g, f_j \rangle = 0$ for $i \leq j < k'$. Without loss of generality we can assume $\langle g, g \rangle = 1$, where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product on \mathbb{R}^N. Therefore we have

$$\langle \mathcal{H} g, g \rangle \geq \lambda_{k'}.$$

Under hypothesis W we know that

$$\lambda_{k'} \geq \lambda_k.$$

Under hypothesis S we have

$$\lambda_{k'} > \lambda_k$$

since the last eigenvalue that is equal to λ_k has index \overline{k}.

It will be convenient to introduce $S := \{ x \in V \mid f_k(x) \neq 0 \}$ and to define $\alpha : V \to \mathbb{R}$ by

$$\alpha(x) := \begin{cases} \alpha_i & \text{if } x \in S \cap D_i \text{ for some } i \\ 0 & \text{otherwise} \end{cases}$$

so that $g(x) = \alpha(x)f_k(x)$ for all $x \in V$.

Lemma 1. Assuming hypotheses W or S, we have $\langle \mathcal{H} g, g \rangle \leq \lambda_k$.

Proof. We have

$$g(x)\mathcal{H} g(x) = g(x) \sum_{y \sim x} b(x, y) \left[g(x) - g(y) \right] + g^2(x)v(x)$$

$$= \alpha(x)f_k(x) \sum_{y \sim x} b(x, y) \left[\alpha(x)f_k(x) - \alpha(y)f_k(y) \right] + \alpha^2(x)f_k^2(x)v(x)$$

$$= \alpha^2(x)f_k(x) \sum_{y \sim x} b(x, y) \left[f_k(x) - f_k(y) \right] + \alpha^2(x)f_k^2(x)v(x)$$

$$+ \alpha(x)f_k(x) \sum_{y \sim x} b(x, y) \left[\alpha(x) - \alpha(y) \right] f_k(y)$$

$$= \alpha^2(x)f_k(x)\mathcal{H} f_k(x) + \text{Rem}(x) = \alpha^2(x)\lambda_k f_k^2(x) + \text{Rem}(x)$$

$$= \lambda_k g^2(x) + \text{Rem}(x)$$

Summing over the vertex set yields

$$\langle \mathcal{H} g, g \rangle = \lambda_k + \text{Rem}$$

(10)
where
\[\text{Rem} = \sum_{x \in V} \sum_{y \sim x} b(x, y) \alpha(x) [\alpha(x) - \alpha(y)] f_k(x) f_k(y) \]
\[= -\frac{1}{2} \sum_{x, y \in V} b(x, y) [\alpha(x) - \alpha(y)]^2 f_k(x) f_k(y) \] (11)

by symmetrizing. A term of the remainder Rem vanishes if \(f_k(x) = 0 \) or \(f_k(y) = 0 \). If \(f_k(x)f_k(y) > 0 \) and \(x \sim y \), i.e. \(b(x, y) > 0 \), then \(x \) and \(y \) lie in the same nodal domain and thus \(\alpha(x) = \alpha(y) \), and the corresponding contribution to Rem vanishes as well. The only remaining terms are those for which \(f_k(x)f_k(y) < 0 \) and \(x \sim y \). So we see that \(\text{Rem} \leq 0 \).
Thus we have \(\langle \mathcal{H}g, g \rangle \leq \lambda_k \langle g, g \rangle = \lambda_k \).

Under hypothesis S, eqns. (5), (7), and Lemma 1 lead to the desired contradiction, proving the second part of the theorem.

Under hypothesis W, eqns. (5), (6), and Lemma 1 imply \(\langle g, \mathcal{H}g \rangle = \lambda_k \). Since \(g \) is by construction orthogonal to all eigenvectors \(f_j, j < k < k' \), a simple variational argument implies
\[\mathcal{H}g = \lambda_k g. \] (12)

For the second step of the proof of the Weak Nodal Domain Theorem we exploit the fact that the remainder \(\text{Rem} = 0 \) as a consequence of eqn. (12). We proceed with a unique continuation result for the function \(\alpha \).

Lemma 2. If hypothesis W holds, \(\alpha_i \neq 0, x \in D_i, y \in D_j \setminus D_i, \) and \(\{x, y\} \in E \) then \(\alpha_j = \alpha_i \).

Proof. If \(x \in D_i, y \in D_j \setminus D_i, x \sim y, \) and \(f_k(x) \neq 0 \) then \(f_k(y) \neq 0 \) (otherwise \(y \in D_i \cap D_j \)), and hence \(f_k(x)f_k(y) < 0 \). From \(\text{Rem} = 0, f_k(x)f_k(y) < 0, \) and \(x \sim y \) we conclude that \(\alpha(x) = \alpha(y) \) and hence \(\alpha_i = \alpha(x) = \alpha(y) = \alpha_j. \)
Now assume that \(f_k(x) = 0 \). Define \(h := f_k - (1/\alpha_i)g \). Then
\[\mathcal{H}h = \lambda_k h \quad \text{and} \quad h|_{D_i} = 0. \] (13)

We have
\[0 = \lambda_k h(x) = \mathcal{H}h(x) = \sum_{y \sim x} b(x, y) [h(x) - h(y)] + v(x)h(x) \]
\[= -\sum_{y \in B} b(x, y)h(y) \] (14)

where \(B := \{y \in V \mid y \sim x \text{ and } y \notin D_i\} \). Note that \(B \neq \emptyset \) by the assumptions of the lemma. Suppose for definiteness that \(D_i \) is a positive nodal domain. Then \(y \in B \) satisfies \(f_k(y) < 0 \) since otherwise one would have to adjoin \(y \) to
Thus $B \cup \{x\}$ is a connected set on which $f_k \leq 0$. Therefore it is contained in the single (negative) nodal domain D_j. Therefore

$$0 = -\sum_{y \in B} b(x, y)h(y) = -\left(1 - \frac{\alpha_j}{\alpha_i}\right) \sum_{y \in B} b(x, y)f_k(y). \quad (15)$$

The terms in the sum are all negative, thus $\alpha_i = \alpha_j$. The same argument of course works when D_i is a negative nodal domain. \triangle

We say that D_i is adjacent to D_j if there are $x \in D_i$ and $y \in D_j \setminus D_i$, $x \sim y$. Note that adjacent nodal domains must have opposite signs. Now consider a collection \{\(D_1, \ldots, D_l\)\} of nodal domains such that $\bigcup_i D_i \neq \emptyset$. Then there exists a nodal domain $D_j \neq D_i$, $i = 1, \ldots, l$, that is adjacent to some D_i, $i = 1, \ldots, l$, otherwise Γ would not be connected.

Now we are in the position to prove the first part of the theorem. We assume hypothesis W and thus the conclusions of lemma 1 and lemma 2. Since $g \neq 0$ there exists an index i for which $\alpha_i \neq 0$. If D_j is a nodal domain adjacent to D_i then lemma 2 implies $\alpha_j = \alpha_i$. Since the graph Γ is connected by assumption, we conclude in a finite number of steps that $\alpha_j = \alpha_i$ for all j. Hence $g = \alpha_i f_k$. This, however, contradicts the fact that $\langle g, f_k \rangle = 0$. \square

4 Two Counter-Examples

Neither the Weak nor the Strong Nodal Domain theorem can be strengthened without additional assumptions. If Γ is a path with N vertices, then f_k has always k weak nodal domains. An example where f_k has more than k strong nodal domains is e.g. given by Friedman [6]: a star on n nodes, i.e., a graph which is a tree with exactly one interior vertex, has a second eigenfunction with $n - 1$ strong nodal domains. For example, the star with 5 nodes has $\lambda_2 = \lambda_3 = \lambda_4 = 1$ and an eigenvector $f_2 = (0, 1, 1, -1, -1)$, where the first coordinate refers to the interior vertex. Since f_2 vanishes at the interior vertex each of the $n - 1$ leaves is a strong nodal domain. These eigenvectors of the stars may also serve as a counterexample to Theorem 6 and Corollary 7 of [3].

Theorems 2.4 of [6] and 4.4 of [8] can be rephrased as follows: If f_k has more than k strong nodal domains, then there is no pair of vertices such that $f_k(x) > 0$, $f_k(y) < 0$ and $x \sim y$, i.e., there is no edge that joins any two strong nodal domains. This statement is incorrect, as the following example shows.
This tree has eigenvalues $\lambda_5 = \lambda_6 = (3 + \sqrt{5})/2$ and a corresponding eigenvector

$$f_5 = (2, -1 - \sqrt{5}, 0, (1 + \sqrt{5})/2, (1 + \sqrt{5})/2, -1, -1)$$

from top to bottom. There are 5 weak and 6 strong nodal domains. Nevertheless, there are edges connecting strictly positive with strictly negative vertices.

Acknowledgements

This work was supported in part by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, Proj. No. P14094-MAT.

References