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Abstract

We used neural -network based modelling to generalize the linear econometric return models
and compare their out-of-sample predictive ability in terms of different performance measures
under three density specifications. As error measures we used the likelihood values on the test
sets as well as standard volatility measures. The empirical analysis was based on return series
of stock indices from different financial markets. The resultsindicate that for all markets there
was found no improvement in the forecast by non-linear models over linear ones, while non-
gaussian model s significantly dominate the gaussian models with respect to most performance
measures. The likelihood performance measure mostly favours the linear model with Student-t
distribution, but the significance of its superiority differs between the markets.

Keywords: forecasting, neural networks, time series models, volatility, GARCH

1 Introduction

It iswidely agreed that although daily and monthly financial asset returns are unpredictable, return
volatility is highly predictable, a phenomen with important implications for financial economics
(e.g., Bollerdev et al. (1992)). Of course, volatility isinherently unobservable, and most of what we
know about volatility has been learned, e.g., by fitting parametric econometric models. Typically
a volatility model is used to forecast the absolute magnitude of returns, but it may also be used

to predict quantiles or, in fact, the entire density. Such forecasts are used in risk management,
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derivative pricing and hedging, market making, market timing, portfolio selection and many other
financial activities. In each, it isthe predictability of volatility that is required. A risk manager must
know today the likelihood that his portfolio will decline in the future. An option trader will want
to know the volatility that can be expected over the future life of the contract. A portfolio manager
may want to sell astock or a portfolio before it becomes too volatile. A market maker may want to
set the bid-ask spread wider when the future is believed to be more volatile. That is why modeling
volatility of financial time series have been avery popular research topic for the last several years.

The most famous model widely used in practice is the GARCH (Bollerslev (1986)) where con-
ditional variances are governed by alinear autoregressive process of past squared returns and vari-
ances. This model captures several " stylized facts’ of asset return series, namely heteroskedasticity
(time-dependent conditional variance), volatility clustering and excess kurtosis. But later studies
(e.g., Nelson (1991), Glosten et al. (1993), Alles and Kling (1994), Hansen (1994)) have found that
there exist additional empirical regularities that can not be described by classica GARCH model,
such as leverage effect, negative skewness, fat tails of conditional distribution. Moreover, Alles and
Kling (1994) showed for different financial series that the third moments are also time-varied. Fur-
ther, Harvey and Siddigue (2000) presented an asset pricing model which incorporated conditional
skewness explicitly and showed its good performance.

We consider the generalization of the classical GARCH model in two directions: the first is to
alow for non-linear dependencies in the conditional mean and in the conditional variance and the
second concerns specification of the conditional density. Asatool for non-linear regression we used
a neural network-based (NN) modeling, so called recurrent mixture density networks, describing
the conditional mean and variance by multi-layer perceptrons (the same approach was applied by
Schittenkopf et al. (1999), Schittenkopf et al. (2000) and Bartimae and Rauscher (2000)). For NN
modelling, these conditional moments can be approximated with an arbitrary accuracy if the size of
the neural network models is not restricted.

We want to note that NN modeling has become rather popular methodology in the last research
literature on financial modeling. We mention only recent ones. Bartlmae and Rauscher (2000),
Boero and Cavallil (1997), Dunis and Jalilov (2002), Gonzalez and Burgess (1997), H.-L. Poh
(1998), J. T. Yao (2000), where the NN approach was found to be advantageous. This is the case
because NN modeling is a semi-parametric and non-linear modeling technique in which data series
themselves identify relationships among variables. And as a semi-parametric model, NN has the

following important advantages over the more traditional parametric models. Since it does not rely



on restrictive parametric assumptions such as normality, stationarity, or sample-path continuity, it
is robust to specification errors plaguing parametric models. Moreover, a NN modéd is sufficiently
flexible and can easily encompass a wide range of securities and fundamental asset price dynamics.
Indeed, NN has considerable flexibility to uncover hidden non-linear relationships among several
classes of individual forecasts and realizations (Donaldson and Kamstra (1997)).

Concerning distributions, we compare three different density specifications. 1) the standard
GARCH gaussian model and its non-linear generalization with normal distribution; 2) the GARCH
model and its non-linear neural network generalization with a Student’s t-distribution; 3) linear and
non-linear recurrent mixture density models, which approximate the conditional distributions by a
mixture of gaussians (two components). All these distributions model heteroskedastic data. The
models with ¢-distribution produce also the conditional leptokurtosis. But only the linear and non-
linear mixture models alow the higher moments to be time varying in general that hopefully give
more flexibility to this class of models. We should note that the modelling of the dependence of
higher-order moments on the past is rather rare in the financial literature. We can mention Gallant
et al. (1991) with semi non-parametric approach to density estimation, based on a series expansion
about the Gaussian density, and Hansen (1994) who applied fixed parameterized forms.

The empirical analysis was based on return series of stock indices from different financial mar-
kets. We used return series of the Dow Jones Industrial Average (USA), FTSE 100 (Great Britain)
and NIKKEI 225 (Japan) over aperiod of more than 12 yearsin order to evaluate in detail the out-of -
sample predictive performance of our models. The models were evaluated with respect to likelihood
as well as with respect to their volatility forecasting performance. The origina return series due to
their length could be split into several parts and each of the model s was estimated separately on every
part. Thus, we could not only compare the models with respect to performance results but also apply
statistical tests to find out whether the differences in performance were significant. We want to note
that we continue the work of Schittenkopf et al. (1999) and Schittenkopf et al. (2000), comparing
non-linear versus non-gaussian volatility models for data from different financial markets.

The paper is organized as follows. In the next section we present the models we are working
with. Section 3 discusses the data that is used in the empirical analysis. Sections 4 present the
performance measures together with the estimation procedure. 1n the section 5 we discuss the results

of the extensive empirical experiments. Finally, Section 6 concludes the paper.



2 Description of Models

The usua approach for modeling return series is to split the returns into a predictable determinis-
tic component y; (mean) and a stochastic error process e, with independent realizations and with
E(es|l;_1) = 0, E(e?|I;_1) = o?, where I,_; denotes series history up to time ¢ — 1. o; isan
estimate of the volatility of the return series at time ¢.

The most prominent model of time-varying volatility is GARCH(p, ¢) introduced in Bollerslev
(1986), where conditional variances are governed by alinear autoregressive process of past squared

errors and variances, i.e.
q p
2 2 2
op = Qo+ Zaiet—i + Zﬂigt—ia D
i=1 i=1

with the restrictions ag > 0, a; > 0, 5; > 0 to ensure positive variances. Stationarity in variance
imposes the condition 7 a; + 37, 8; < 1.

In this paper we consider only the GARCH(1,1) model which is (1) withp = ¢ = 1. The
GARCHY(1,1) specification has proven attractive for models of returns. It typically dominates other
GARCH models using Akaike or Schwarz information criteria (see Bollerslev et al. (1992)).

Due to the significant autocorrelation found in many return series, we chose the autoregressive
process of the order 1 for the mean equation, i.e. iy = a17;_1 + ag.

One possible extension of the GARCH model isto substitute the conditional normal distribution
by a Student’s-t distribution with v degrees of freedom in order to allow for excess kurtosis in the
conditional distribution ( see Bollerslev (1987) for details). The conditional variance is again given
by the specification (1) and the parameter restrictions for stationarity of the model are the same
as those for the GARCH model. Since the conditional density of ¢-distribution is symmetric, the
conditional skewnessisagain 0. The new parameter degrees of freedom » determines, among other
characteristics, the kurtosis of the conditional distribution. For » > 4, the conditional kurtosis is
givenby 3(v—2)/(v—4) whichisawayslarger than 3. Therefore, GARCH-¢ models exhibit fat tails
in the unconditional and in the conditional distribution. As for GARCH models, the higher-order
moments of the distribution are not time-dependent.

The second direction of the extension of the classical GARCH model isto allow for non-linear
dependencies in the conditional mean and in the conditional variance. As a tool for non-linear
regression we used neural network-based modeling, so called recurrent mixture density networks,
describing conditional mean and variance by multi-layer perceptrons (MLP) (the approach applied
by Schittenkopf et al. (2000)).



In the simplest case an MLP with one input unit, one layer of hidden units and one output unit

realizes the mapping
H
flze) =g (Z vih(wjze +¢j) + szt + b) ; )

j=1
where H denotes the number of hidden units, w; and v; the weights of the first and second layer,
s the shortcut weight, and ¢; and b the bias weights of the first and second layer. In general, the
activation function h of the hidden units is chosen to be bounded, non-linear, and increasing as,
e.g., the hyperbolic tangent. The activation function of the output unit may be unrestricted, e.g.
g(z) = z. Hornik et al. (1989) showed that MLP can approximate any smooth, non-linear function
with arbitrary accuracy as the number of hidden units tends to infinity. In such a way, MLP can
be interpreted as a non-linear autoregressive model of first order and can be applied to predict the
parameters of conditional density of the return series.

Recurrent mixture density network models RMDN(n) approximate the conditional distributions

of returns by amixture of n Gaussians:
n
p(reli—1) = Zﬂi,tk(ﬂ'i,taazt)a ©)
i=1

where k(p;,¢,07,) is the gaussian density and the parameters s, j1;,4, and o7, of the n gaussian

components are estimated by three MLPs:

. exp(7i)
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where fm, denotes the ith component of the output of the mth MLP. The softmax function s(7 ;)
in (4) ensures that the priors 7; ; are positive and that they sum up to 1 which makes the right-hand
side of (3) adensity. TheMLPsf; ; and f,; estimating the priors and the centers are standard ML Ps

(2). The MLP fg’i estimating the variances of the normal densities is recurrent and has the form
H n n
O'i%t =g Z’Uijh (wjoegl + Z wjko-lz,tfl + Cj> + Si0€?4 + Z Sikgz,tfl +0b;].
j=1 k=1 k=1

Itsinput is (n + 1)-dimensional (plus bias) and consists of the squared error ¢_; = (r; 1 — juy1)>

and the n previous conditional variances of , |, k = 1,...,n. The activation function of the



n output units is chosen as g(x) = |z| to ensure non-negative network outputs, i.e., conditional
variances.

The total number of weights of an RMDN(n) model equals 2(2n + 3)H + n? + 6n.

In terms of the parameters of the mixture distribution, the conditional mean and the conditional

variance of future return are given by

n
pe = Z TG kit )
Zm(m (i — 1)) ©)
The skewness s; and the kurtosis k; of the conditional distribution can also be calculated analyticaly:
=3 Z”zt (3‘% (it — o) + (pig — Mt)?’) (10)
t =1
ke =— Z it (3Uzt + 607 (i — pe)” + (g — Mt)4) (11)

Tt i=1
This time-dependence of the higher-order moments is an appealing feature of RMDN models and it

isin contrast to the properties of GARCH and GARCH-¢t models.

We note that an RMDN model with one Gaussian component (n = 1) can be interpreted as a
non-linear extension of a GARCH model.

There are two other models that must be introduced in order to analyze the influence of linear and
non-linear functions and density specification on the performance of return series models in detail.
First, we consider non-linear GARCH-t models in the framework of RMDN models by replacing
the weighted sum of normal densities in (3) by the density of the ¢-distribution. These models
will be called RMDN(1)-t models in the following. Secondly, one must study the performance of
mixture models for the case that only linear functions are alowed. More precisely, in al three
MLPs estimating the parameters of the mixture model the activation function £ of the hidden units
are supposed to be linear. These linear mixture models are referred to as LRMDN(n) models in
the following. LRMDN(1) is again the classical GARCH model. We limited ourselves to the cases
n = 1 and n = 2, mainly focusing on the non-linearity aspects.

In such away, we concentrate further on the comparison of the performance of the following six

models according to two dimensions: linearity issue and distributional aspect:
type of distribution Linear Non-linear

gaussian GARCH(1,1D) RMDN(2)
t-distribution GARCH(1,1)-t RMDN(1)-t
mixture of gaussians | LRMDN(2) RMDN(2)




3 Data Sets

In our numerical experiments we used three data sets related to different financial markets:
1. daily closing values of the American stock index Dow Jones Industrial Average (DJIA);
2. daily closing values of the FTSE 100 traded at the London Stock Exchange;
3. daily closing values of the Japan index NIKKEI 225.

The index series were taken from public sources. The time interval for all data sets was 13 years
from 1985 to 1997. All datawere transformed into continuously compounded returns % (in percent)
in the standard way by the natural logarithm of the ratio of consecutive daily closing levels. The
time series of returns together with their unconditional kernel density approximations are depicted
in Fig.1. We want to note that we did not perform the data cleaning to delete the outliers from the
further analysis. Thus, the extremal negative market returns in October, 1987 are left and used in the
estimation procedure.

In order to take care of stationarity issues and increase the reliability of the empirical analysis, al
time series were divided into overlapping segments of afixed length of 700 trading days, where the
first 500 returns of each segment form atraining set, the next 100 points form avalidation set and the
remaining 100 returns are used for testing. The detailed segment structure is presented in see Fig.2.
The first segment starts on trading day 1 and ends on day 700, the second segment begins on day
101 and ends on trading day 800 and so on. The training sets are used to optimize the parameters of
each model. The validation sets are used for an " early stopping” strategy to avoid overfitting for the
neural networks models and independent test sets are reserved for out-of-sample model performance
evaluation. The test sets are not overlapping.

In such a way, according to the available data, we got around 25 segments for the discussed
return series. The summary of the descriptive statistics of the data are plotted in Fig.3. It can be seen
that all logarithmic series exhibit time-dependent significant skewness and excess kurtosis indicating
non-normality of the unconditional distributions. Enormous skewness and kurtosis on segments 1-7

can be explained by the influence of the October 1987 defauilt.

4 Error Measuresand Estimation of Models

We fitted GARCH(1,1), RMDN(1), GARCH(1,1)-t, RMDN(1)-t, LRMDN(2) and RMDN(2) mod-

elsto each of the training sets separately. The number of optimized parameters of a particular model



is 5 for the GARCH(1,1) model, 26 for RMDN(1), 6 for GARCH(1,1)-¢, 27 for RMDN(1)-¢, 16 for
LRMDN(2) and 54 for RMDN(2). The number of hidden units of the MLPsin the RMDN-models
was chosen to be H = 3. The parameters of all models were optimized with respect to the average

negative log likelihood of the sample

1 N
N > log p(re| Ii-1),
t=1

L=

where N denotes the sample size and p(r;|I;—1) is the conditiona probability density function of
the corresponding distribution. We refer to £ as the loss function of a data set, since we will make
use of values of £ calculated for data sets which were not used to estimate the model parameters.

The optimization routine was a scaled conjugate gradient algorithm. We performed optimization
of RMDN models with several parameter initializations in an attempt to approach aglobal optimum.
For the models with ¢-distribution, the degrees-of-freedom parameter was additionally optimized by
aone-dimensiona search routine.

Since the main goal of this work is out-of-sample diagnostic, i.e., comparison of model perfor-
mance on a future data set (test set), we are interested in obtaining models with optimal generaliza-
tion performance. However, all standard neural network architectures such as the fully connected
multi-layer perceptron are prone to overfitting (see, e.g., Geman et al. (1992), Reed (1993)): while
the network seems to become better and better , i.e., the error (in our case - the value of the loss
function) on the training set decreases, beginning with some point during training the error on an
unseen sample increases. In order to prevent the RMDN models from overfitting the training data,
the generalization error is estimated by the performance of the model on a validation set and an
"early stopping” strategy (Prechelt (1998)) is applied . More precisely, the model parameters are
optimized with respect to the loss function on the training set and after each iteration the loss func-
tion on the validation set is calculated. Finally, the RMDN model on the optimization iteration ¢ is
selected, where

t* = arg min Lygidaion(t
gt0<t<T val|da1|on( )a

where t is an iteration number;

T isthe number of al iterations performed;

to - minimal iteration number chosen to avoid artefact behaviour of the loss function on the
validation set in such away that the parallel value of the loss function on the training set of simpler
(less parametrized) mode is beaten.

In addition to the loss function, some other error measures common in literature are applied to



analyze the performance of the models. Since the actual purpose of a volatility model is to predict
future volatility, we need some "true” measure of volatility. Because the volatility process is not
observed, researchers have used a variety of empirical measures of daily return variability, often
called realized volatility. The most common method for computing a daily realized volatility which
we also apply hereisto square the daily period returns. Andersen et al. (2001) are critical about the
squared daily returns to measure the realized volatility and propose to use high-frequency intraday
returns for this purpose. But our main point is that even "bad” volatility forecasts according to
evaluation criteriado not necessarily imply that these volatility forecasts are not useful for comparing
the model performances. In such away, denoting the estimated conditional variance as & (for time
step t), we calculate

-the normalized mean squared error

N (.2  ~92\2
NMSE — 21521(7;5 ‘;t) -
Y= (i — i)

relating mean square error of the modeled volatility 67 to the mean square error of the naive mode!
6'152 — 7”?_1.
-the normalized mean absolute error
21{\;1 |7’1t2 _ a-tZ |
N ?
it r? =i

which is more robust against outliers in comparison with NM SE.

NMAE =

Furthermore, the ability of the model to predict increases and decreases of volatility is investi-
gated with the help of the following measures:
- the hit rate

1 N
HR = —
N Zot’
t=1
with

0;

as ameasure of how often the model gives the correct direction of change of volatility. HRe (0, 1),
where a value of 0.5 indicates that the model is not better than a random predictor generating a
random sequence of up and down moves with equal probability.

-the weighted hit rate

N ~
D=1 59”((‘73 - 7"?71)(7"? - 7’7:271))|7’t2 - 7"?71

WHR =
Z;{L |7"t2 - 7"75271|



WHR takes also the real changes r? — r? ; into account meaning that large changes are considered
more important. WHR € (-1,1) with avalue of 1 in the perfect case.

In such a way, we compare out-of-sample model performances based on different volatility
measures.

We want to note that the volatility measures above consider only the second conditional moment,
not taking into account the flexible behaviour of the mixture density models with respect to the
higher order moments. Moreover, the models adjustment was based on the optimization of the
likelihood function (without any relation to the volatility measures). That is, we think about the
likelihood values on the test sets as being more appropriate error measure and base our conclusions

mostly on likelihood results.

5 Reaults

We investigated out-of-sample performance of the models, i.e. error values on data sets digjoint from
the training data. The parameters of the models were estimated by the procedure described above
using training and validation sets and then, keeping the parameters fixed, we computed the error
measures on the test sets of the corresponding segments. The favour to the out-of sample criterion
for a comparison of the models was given because in this case possible overparametrizations may
be neglected.

In spite of the numerous different starting values in the optimization procedure for the neura
network models, we obtained on some test sets for single models values of the loss function that
were three-five times larger than the average level. Based on the smooth behaviour of the loss
function for other models on the same test set, we considered such models to be " non-indicated”
overfitting cases and deleted these test sets parallel for all data sets from analysis. After eliminating,
we got 24 test sets for model evaluation.

We checked the GARCH models for the stationatiry (the condition og +3; < 1). All themodels
were found stationary except for NIKKEI 225 series for the sets 10 and 11 (years 1987-1988).

To illustrate the flexible structure of the mixture models, we check the prediction behaviour of
the higher order moments for DJA returns for two test sets (in 1990 year) in Fig.4. While the
models with ¢-distribution keep the conditional skewnessto be 0 and the kurtosis to be 4.33 and 4.89
for the first and the second part of the presented test sample, the mixture models predict skewness
and kurtosis plots far from being stationary.

The performance of the models on each of the test sets for DJA data with respect to the loss

10



measure is summarized in Fig.5. For convenience of the analysis, al the results are presented with
respect to the functiona form of conditional variance equation (linearity versus non-linearity) and
atype of conditional distribution. We compare the performance of the gaussian model versus the
model with ¢-distribution versus the mixture of gaussians. Thus, three lines in the upper panel of the
figure give the values of the relevant statistic for the linear models GARCH(1,1), GARCH(1,1)-t and
LRMDN(2). The bottom panels present non-linear models RMDN(1), RMDN(1)-¢ and RMDN(2).
Based on Fig.5, we can make the following preliminary conclusion: in general, the differences
between the models over the most test sets are negligible. On single sets (test set 5,6 and 10-12)
the linear and non-linear gaussian models show the worse results, while the models with Student-¢
distribution exhibit the smallest likelihood values. If we compare the upper and the lower plotsin
Fig.5, we can note that the linear models and their non-linear neural network generalizations reach
mostly equal likelihoods. Single cases, like test set 11, where non-linear RMDN(1) model show
the loss value close to 1.6 against 1.2 for the linear GARCH(1,1), and the sets 23-24, where the
non-linear mixture density RMDN(2) behaves significantly worse than its linear version, can be
explained by the problems with the maximum likelihood estimation of the non-linear models.

In order to be statistically consistent in the model selection process, we tested the hypothesis
of higher/lower errors by performing parametric and nonparametric tests. More precisely, we per-
formed a paired ¢-test and a matched pairs signed rank Wilcoxon test (paired Wilcoxon test) for
the five error measures ‘Loss', NMSE, NMAE, HR, and WHR. The application of the paired tests
is appropriate for the following reason: The error measures of each model vary considerably with
the actual segment of the underlying return series but the differences between the error measures
of different models are rather small. Therefore the differences can only be detected if a paired test
which takes into account the correlations between the error measures, is applied. Additionally, for
the paired ¢-test it is assumed that the differences are normally distributed what is not always the case
and whereas for the paired Wilcoxon test it is only assumed that the distribution of the differences
is symmetric. Because of this fact, our conclusions are mostly based on the results of the paired
Wilcoxon test. For our most reliable evaluation criterion (loss function) we present the results (Ta-
bles 1, 4, 7) of both tests, while for the volatility measures - only the results of the paired Wilcoxon
test (Tables 2-3, 5-6, 8-9) (to save the space).

The results of the paired test for DJIA return series are summarized in Tables 1-3. The column
"mean” givesthe mean value of the corresponding statistic over all test sets. The minimal mean value

1.184 of the loss function is reached by the GARCH(1,1)-t model. The p-values of both paired tests
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between this model and all other models are less than 0.025, indicating that these differences are
significant, i.e. GARCH(1,1)-¢ significantly outperforms all other models. Its non-linear generaliza-
tion RMDN(1)-¢ is either among the best with the mean loss function value 1.201, but the p-value
of the Wilcoxon test for the differences between this model and the linear mixture density model
LRMDN(2) is 0.103 (or even 0.776 by ¢-test). At that, RMDN(1)-¢ performance statistically does
not differ much from the LRMDN(2) performance over all test setsin consideration. Thethird group
of the models consists of both gaussian models and the non-linear mixture model. The performance
of this group with respect to the loss valuesisthe worst. It also seems that on average linearity plays
some positive role since linear models reached in awhole smaller values of loss function compared
to their non-linear analogs but this differences are mostly not significant (the p-values between the
linear models and their non-linear versions are 0.710, 0.015 and 0.319 for the gaussian, Student-¢
and the mixture of gaussians conditional distributions, respectively.

The average results with respect to the volatility measures (Tables 2-3) show some consistency
with the conclusions above. All the measures favour the models with Student-¢ conditional distri-
bution, with the non-linear RMDN(1)-¢ to be sightly better. But the performance of the non-linear
gaussian model RMDN(1) appeared to differ not significantly from them (with p-values more than
0.212). On the contrary to the results above, the linear mixture model together with its non-linear
generalization demonstrates the bad performance with respect to al volatility error measures.

Table 4 together with Fig.6 show the results for FTSE 100 returns with respect to the loss func-
tion. The graphical plots give no preferences to any model or any class of models. With respect
to the average statistics, the linear models GARCH(1,1)-¢ and the mixture LRMDN(2) outperform
al other models, but their advantage appeared to be not significant comparing with al other models
(the p-values of the Wilcoxon test between LRMDN(2) and all other models are more than 0.107).
Moreover, according to the paired tests, there is no statistical difference between the linear and non-
linear mixture models at al (the corresponding p-value of the Wilcoxon test is 1.00). The non-linear
model with Student-¢ conditional distribution appears in this case to be among the worst with respect
to the mean value of the loss function over al test sets.

For the alternative error measures weincluded in the paper again only the results of the Wilcoxon
paired test (Tables 5-6). We found no consistency with respect to the model ordering for these mea-
sures. In addition, almost all differences in the models' performance are declared by the Wilcoxon
test to be not significant. The numerical square errors dightly prefer both models with ¢-distribution

and place the mixture models on the last position. On the contrary, the hit rates' measures put the
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mixture models before the GARCH(1,1)-t and RMDN(1)-¢. Non-linearity seems to play again no
significant role in model performance. So, in general, the obtained results clearly favour the models
with ¢-distribution and mixtures of gaussians over the gaussian models, but are uncertain with some
strict model ordering within non-gaussian models.

Out-of-sample diagnostic of NIKKEI 225 seriesis given in Fig.7 and Tables 7-9. Asin the case
with FTSE 100 data, the graphical plot of the likelihood values over all test setsin Fig.7 gives no
clear preferences to any model. But the results of the paired statistical tests with respect to the loss
function and the volatility error measures show the advantage of the linear and non-linear models
with ¢-distribution. The mixture models take the second place, but their performance lose to the
models with ¢-distribution not significantly (the corresponding p-values are more than 0.109). But

both gaussian models again show the worst efficiency with respect to al error measures.

6 Discussion and Conclusions

We analyzed the impact of non-linearity and of non-gaussian distributions versus the classical
GARCH model. The empirical analysis was based on return series of stock indices from differ-
ent financial markets. We divided data into a number of segments in order to take into account
stationarity issues and to perform reliable model selection in the maximum likelihood framework.
The parameters of all models were first estimated on the training part of every segment by the usual
maximum likelihood methodology and then we performed out-of -sampl e forecasts and forecast eval-
uations on the test sets. The models were evaluated with respect to the likelihood aswell as standard
volatility performance measures.

In analyzing the obtained results, we emphasize the likelihood characteristic of the test sets
because we consider it to be a more reliable error measure compared to the alternative volatility
measures. This is explained by, first, our uncertainty concerning the squared daily returns as the
estimates for the realized volatility. Second, the volatility measures above consider only the second
conditional moment, not taking into account the flexible behaviour of the mixture density models
with respect to higher order moments, while the likelihood measure reflects the conditional distri-
bution as awhole. And the last point is that we fit the models by optimizing the likelihood function
and, therefore, it is more adequate to compare models performances.

Summing up, we derived the following conclusions:

e All statistical tests clearly confirmed the expected conclusion that non-gaussian models sig-

nificantly dominated the gaussian ones with respect to the most performance measures for al

13



stock indices considered.

e At the same time, within non-gaussian models themselves there was some difference across
the markets, namely, for DJA series amost al tests gave the significant superiority to the
models with ¢-distributions, while for FTSE 100 data the mixture models were among the
best and for the japanese index NIKKEI the models with ¢-distribution and mixture density
networks were almost statistically equal in their performance. But, while both the models
with ¢-distribution and mixture density networks are capable to capture fat tail elementsin the
conditional distribution, only mixture density networks allow for time-varying skewness and

kurtosis which are found to be common in financial markets.

e The likelihood performance measure mostly favours the linear GARCH(1,1)-¢ model over
al data sets considered, but the significance of its superiority differs between the markets.
The results with respect to the alternative volatility measures do not show any consistent
preferences to one definite model, but give dight advantage to the class of the models with

t-distribution.

e For al markets we did not find any improvement in the forecast by non-linear models over

linear ones for all the error measures applied.

To extend the paper, the alternative approach (to the discussed statistical measures) to compare the
model performance can be based on some practical model applications, e.g., in risk management, to

evaluate and compare Vaue-at-risk predictions, or to define the trading strategies.
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Model Mean 1 2 3 4 5 6

1: GARCH(1,1) 1.249 - 0.165 0.002 0.073 0019 0.778
2: RMDN(1) 1.278 | 0.710 - 0.001 0.012 0.009 0.385
3: GARCH(1,1)-¢ | 1.184 | 0.000 0.000 - 0.025 0.007 0.004
4: RMDN(1)-¢ 1.209 | 0.004 0.004 0.015 - 0.776  0.050
5: LRMDN(2) 1214 | 0.008 0.010 0.000 0.103 - 0.090
6: RMDN(2) 1255 | 0.265 0.230 0.000 0.032 0.391 -

Table 1: DJIA daily returns. Loss function statistics. Mean values (second column), p-values for the
paired t-tests (above the diagonal) and p-values for the paired Wilcoxon signed rank tests (below the

diagonal).

Model NMSE 1 2 3 4 5 6 NMAE
mean mean
1: GARCH(1,1) 0.758 - 0230 0.219 0013 0.710 0.290 | 0.872
2: RMDN(1) 0.747 | 0.407 - 0886 0.230 0.086 0.954 | 0.841
3: GARCH(1,1)-t | 0.739 | 0.008 0.304 - 0.021 0.097 0.797 | 0.833
4: RMDN(1)-¢ 0.730 | 0.049 0.932 0.732 - 0.011 0.241 | 0.785
5: LRMDN(2) 0.765 | 0.253 0.024 0.003 0.012 - 0.067 | 0.885
6: RMDN(2) 0.764 | 0424 0024 0.032 0.015 0.886 - 0.860

Table 2: DJA daily returns. NMSE and NMAE statistics. Mean values of NMSE (second column)
together with p-values for the paired Wilcoxon signed rank tests (below the diagonal). Mean values
of NMAE (the last column) together with p-values for the paired Wilcoxon signed rank tests (above

the diagonal).

Model HR 1 2 3 4 5 6 WHR

mean mean
1: GARCH(1,1) 0.693 - 0420 0.035 0021 0.131 0.058 | 0.729
2: RMDN(1) 0.700 | 0.421 - 0212 0.248 0.117 0.036 | 0.736
3: GARCH(1,1)-t | 0.698 | 0.394 0.943 - 0.286 0.039 0.012 | 0.750
4: RMDN(1)-t 0.719 | 0.013 0.019 0.001 - 0.033 0.006 | 0.756
5: LRMDN(2) 0.687 | 0404 0.124 0.360 0.002 - 0548 | 0.714
6: RMDN(2) 0.693 | 0.968 0.240 0520 0.005 0.363 - 0.714

Table 3: DJIA daily returns: HR and WHR statistics. Mean values of HR (second column) to-
gether with p-values for the paired Wilcoxon signed rank tests (below the diagonal). Mean values
of WHR (the last column) together with p-values for the paired Wilcoxon signed rank tests (above
the diagonal).
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Model Mean 1 2 3 4 5 6

1: GARCH(1,1) 1.189 - 0227 0.028 0389 0457 0.612
2: RMDN(2) 1.217 | 0.153 - 0125 0830 0.190 0.214
3: GARCH(1,1)-t | 1.179 | 0.012 0.007 - 0.250 0.111 0.083
4: RMDN(1)-¢ 1215 | 0.831 0.059 0.048 - 0.325 0.364
5: LRMDN(2) 1184 | 0.648 0.107 0.236 0.394 - 0.635
6: RMDN(2) 1.187 | 0.855 0.094 0.107 0.927 1.000 -

Table 4: FTSE 100 daily returns: Loss function statistics. Mean values (second column), p-values
for the paired t-tests (above the diagonal) and p-values for the paired Wilcoxon signed rank tests

(below the diagonal).

Model NMSE 1 2 3 4 5 6 NMAE
mean mean
1: GARCH(1,1) 0.733 - 0301 0.001 0.016 0.260 0.429 | 0.807
2: RMDN(1) 0.732 | 0.715 - 0927 0.006 0.761 0.784 | 0.802
3: GARCH(1,1)-t | 0.729 | 0.004 0.412 - 0121 0.274 0.648 | 0.798
4: RMDN(1)-t 0.729 | 0.162 0.135 0.605 - 0.144 0.107 | 0.789
5: LRMDN(2) 0.733 | 0.670 0429 0.101 0.274 - 0.301 | 0.803
6: RMDN(2) 0.735 | 0484 0.089 0.023 0.073 0.808 - 0.800

Table 5: FTSE 100 daily returns:. NMSE and NMAE statistics. Mean values of NMSE (second
column) together with p-values for the paired Wilcoxon signed rank tests (below the diagonal).
Mean values of NMAE (the last column) together with p-values for the paired Wilcoxon signed
rank tests (above the diagonal).

Model HR 1 2 3 4 5 6 WHR

mean mean
1: GARCH(1,1) 0.708 - 0877 0.059 0.616 0.109 0.398 | 0.749
2: RMDN(1) 0.711 | 0.379 - 0227 0.638 0.149 0.122 | 0.747
3: GARCH(1,1)-¢ | 0.714 | 0.013 0.345 - 0.879 0.528 0.936 | 0.755
4: RMDN(1)-t 0.714 | 0.240 0.382 0.925 - 0.527 0.469 | 0.746
5: LRMDN(2) 0.717 | 0.006 0.088 0.093 0.486 - 0.940 | 0.757
6: RMDN(2) 0.718 | 0.072 0.112 0.298 0435 0.730 - 0.756

Table 6;: FTSE 100 daily returns: HR and WHR statistics. Mean values of HR (second column)
together with p-values for the paired Wilcoxon signed rank tests (below the diagonal). Mean values
of WHR (the last column) together with p-values for the paired Wilcoxon signed rank tests (above
the diagonal).
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Model Mean 1 2 3 4 5 6

1: GARCH(1,1) 1.598 - 0.643 0.000 0.001 0.002 0.011
2: RMDN(2) 1.597 | 0.367 - 0.001 0.002 0.004 0.022
3: GARCH(1,1)-t | 1.557 | 0.000 0.001 - 0,531 0.207 0.058
4: RMDN(1)-¢ 1559 | 0.002 0.003 0.840 - 0421 0.124
5: LRMDN(2) 1.565 | 0.004 0.007 0.253 0.253 - 0.300
6: RMDN(2) 1571 | 0016 0.021 0.174 0.109 0.242 -

Table 7: NIKKEI 225 daily returns: Loss function statistics. Mean values (second column), p-
values for the paired t-tests (above the diagonal) and p-values for the paired Wilcoxon signed rank

tests (below the diagonal).

Model NMSE 1 2 3 4 5 6 NMAE
mean mean
1: GARCH(1,1) 0.829 - 0.397 0.002 0.023 0.065 0.778 | 0.947
2: RMDN(1) 0.855 | 0.840 - 0074 0.069 0211 0.353 | 0.942
3: GARCH(1,1)-t | 0.793 | 0.048 0.264 - 0.382 0.861 0.009 | 0.891
4: RMDN(1)-t 0.789 | 0.061 0412 0.397 - 0.192 0.017 | 0.886
5: LRMDN(2) 0.797 | 0.061 0.221 0493 0.174 - 0.061 | 0.894
6: RMDN(2) 0810 | 0115 0.353 0.098 0.051 0.192 - 0.936

Table 8: NIKKEI 225 daily returns: NMSE and NMAE statistics. Mean values of NMSE (second
column) together with p-values for the paired Wilcoxon signed rank tests (below the diagonal).
Mean values of NMAE (the last column) together with p-values for the paired Wilcoxon signed
rank tests (above the diagonal).

Model HR 1 2 3 4 5 6 WHR

mean mean
1: GARCH(1,1) 0.661 - 0150 0.123 0.394 0.153 0.376 | 0.621
2: RMDN(1) 0.665 | 0.597 - 0.019 0.081 0.029 0.109 | 0.596
3: GARCH(1,1)-¢ | 0.680 | 0.014 0.033 - 0.861 0.445 0.201 | 0.671
4: RMDN(1)-t 0.684 | 0.020 0.030 0.352 - 0.677 0.076 | 0.660
5: LRMDN(2) 0.680 | 0.040 0.030 0.896 0.408 - 0.476 | 0.658
6: RMDN(2) 0.670 | 0.306 0681 0.126 0.091 0.171 - 0.638

Table 9: NIKKEI 225 daily returns; HR and WHR statistics. Mean values of HR (second column)
together with p-values for the paired Wilcoxon signed rank tests (below the diagonal). Mean values
of WHR (the last column) together with p-values for the paired Wilcoxon signed rank tests (above
the diagonal).
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