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Abstract: A rejection algorithm — called transformed density rejection — that uses a new method for
constructing simple hat functions for an unimodal, bounded density f is introduced. It is based on the
idea to transform f with a suitable transformation 7' such that T'(f(z)) is concave. f is then called
T-concave and tangents of T'(f(z)) in the mode and in a point on the left and right side are used to
construct a hat function with table-mountain shape. It is possible to give conditions for the optimal
choice of these points of contact. With T' = —1/+/z the method can be used to construct a universal
algorithm that is applicable to a large class of unimodal distributions including the normal, beta, gamma
and t-distribution.
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1. Introduction

In papers on random number generation the main emphasis is often laid on the speed of algo-
rithms tailored for standard distributions. On the other hand some universal algorithms were
proposed (see [6]) on which one can fall back when no standard algorithm is available. But
these algorithms are very slow compared with algorithms specialized for only one distribution.
Algorithms that are fast and can be used for a large class of continuous distributions (see e.g.
[1], [17], [6] chapter VII) need a slow set-up step and large tables. So we aimed to design a
universal method which is not too slow and needs only a short set-up. In this paper we intro-
duce a general method, called transformed density rejection, that can be applied to a variety
of unimodal continuous distributions with bounded densities which need not be log-concave. It
is a generalization of a method for log-concave distributions that uses rejection from a distri-
bution with uniform center and exponential tails and was proposed for several continuous and
discrete standard distributions (see e. g. [18], [19], [14], and [6] chapter VII.2.6). In [7] a black
box method for discrete log-concave distributions is based on that idea, in [9] an adaptation was
suggested as an automatic method for continuous log-concave distributions, in [11] a method
with uniform center and geometric tails was used to design a universal method for discrete log-
concave distributions. Transformed density rejection can be used to design short algorithms for
fixed distributions and — adding a conceptually simple set-up step — it results in a universal
algorithm that is not much slower than most of the specialized algorithms and can be used for
a variety of standard and non-standard distributions.

The paper is organized as follows. In Section 2 we give the theorems and the basic algorithm
for the most general version of transformed density rejection. Section 3 contains the two most
important special cases; their application to standard distributions is compared with the ratio of
uniforms method. Section 4 discusses the possibility to design automatic or universal methods
using transformed density rejection and gives the detailed description of the most useful algo-
rithm of this kind. In Section 5 the computational experience with that algorithm for various
distributions is compared with black-box methods and specialized algorithms given in literature.

2. Transformed density rejection



The idea of transformed density rejection is very simple: Transform the density function of the
desired distribution with a suitable transformation 7T'(z) defined for z > 0. We define h(z) =
T(f(z)) and a piecewise linear function [(x) with [(x) > h(xz) for all z in the support of f (i.e. the
closure of {z|f(z) > 0}). T~'(I(x)) is then a dominating function for f(z) and rejection can be
used to sample from the desired distribution. In order that the choice of [(x) can be automated
in a simple way we restrict our attention to the case that h(x) = T(f(x)) is concave. (We call
a function concave if its derivative is monotonically decreasing on its support as this definition
admits single points where f'(z) does not exist.) Among the many possibilities to choose I(z)
we take the simplest one and define [(z) as the minimum of the three lines touching h(z) in the
mode m, in x; < m and in z, > m respectively. So we have

h(z) <I(z) = min (h(z;) + k' () (z — 21), h(m), h(z,) + b (z,)(z — z,))

In order that the method works the following four conditions are necessary:

a) limy 0 T'(z) = —oc;

b) T(x) is differentiable and 7"(z) > 0, which implies that T~ exists;

¢) Jo? T Y(h(m) — ) dz < 0o

d) h(z) =T(f(x)) is concave.

To make transformed density rejection applicable in practice we add the conditions: F(x) =
[T=Y(x) dz is not too complicated and F~!(z) exists. Without loss of generality we assume
lim, o F(z) = 0.

If we want to use rejection it is necessary to compute the two intersection points b; and b, of
the three parts of I(z) and to compute the areas between z-axis and T~!(I(z)) for the three
intervals which are called v;, v, and v,. Sampling from a density proportional to T='(I(z)) is
done by inversion for the left and the right tail region, in the center T~!(I(z)) is constant. The
details are contained in the below algorithm.

Algorithm TDR:

1: (Set-up) Prepare a function f(z) that returns values proportional to the density function
of the distribution and a function A'(z).
Set m < mode of the distribution,
iy < inf{z|f(z) > 0}, i, « sup{z|f(z) > 0} (4, and i, need not be finite).
Choose z; in the interval (i;, m) and z, in the interval (m,i,).
Set by < x; + (h(m) - h(wl))/hl(xl)a by <z, + (h(m) - h(xr))/h,(xr)u
v < (F(h(m)) — F(B' () (2 — z1) + h(z0))) /B (1), ve <= f(m)(br — by),
vp = (F(W () (ir — z0) + B(z)) — F(h(m))) /W (z1).

2: Generate a uniform random number U and set U < U - (v; + v + vy).

2.1: U < set X < (F~Y(=UW(z;) + F(h(m))) — h(x)) /B (1) + 21,
lp < T7YW (27)(X — ;) + h(x))).
Else if U < v + ve set X < (U —vp)/ve)(by — by) + by, Iz < f(m).
Else set X <+ F~Y((U — (v; +ve))W (z) + F(h(m))) /N (x,) + =y,
Iy T YW (z,)(X — z,) + h(z,)).

2.2: Generate a uniform random number V and set V < V - [,.

2.3: fV < f(X) return X, else go to 2.

As it was stated in the introduction similar methods with T'(z) = log(x) were already suggested
in literature. In this case the above conditions are obviously fulfilled for any log-concave density.
Figure 1 shows in the left part A(z) (thick line) and /(x) (thin line) on the right hand side f(z)
(thick line) and T "(I(z)) (thin line), both for the normal distribution and z; = —v/2, z, = v/2.



Figure 1

For most of the distributions the evaluation of f(z) is time consuming. Therefore it is worth-
while to use the two lines connecting the three points of contact z;, m and x, as simple squeezes
in the interval (z;, z,) (shown as dashed lines in Figure 1). The validity of these squeezes follows
from the fact that h(x) is concave.

Algorithm TDRS: (The following two steps must be inserted in Algorithm TDR)

1.1: (inserted after step 1:)
Set s; <= (h(m) — h(x;))/(m — ), sp < (h(m) — h(zy))/(m — ;).

2.3.0: (inserted as the first part of step 2.3:)
If (X <m)
if (X >z;and V < T 1(h(m)— (m — ) % 5;)) return X.
Else if (X <z, and V < T~ Y(h(m) — (m — x) * 5,)) return X.

The question that is left open in Algorithm TDR is the choice of the points of contact x; and z,..
For a fixed distribution with unbounded support it is quite simple to choose these points such
that the area between the dominating curve and the z-axis is minimized. The below theorem
contains everything necessary. (The special case T'(z) = log(z) was already proved in [6] chapter
VII.2.6 Theorem 2.6 .)

Theorem 1: Let f(z) > 0,Vz > m be a bounded monotone density with mode at m, or let
f(xz) > 0,Vz be a bounded unimodal density with mode at m. Let T'(x) be a transformation
fulfilling the conditions a) to d) of above, h(z) and F(z) defined as above.

The area under the dominating curve of Algorithm TDR is minimized when z, and z; fulfill the
condition:

flan =1 () - SEED) )

The area below the dominating curve, which is equal to the expected number of iterations, equals
f(m)(z; — x,) in the two-sided and f(m)(z, —m) in the monotone case.

Among the class of distributions which are T-concave (i.e. T'(f(z)) is concave) for a fixed trans-
formation T the area below the dominating curve of the optimal algorithm is bounded by
to=—F(T(1))/(F(—F(T(1))+T(1))— F(T(1))). (In [6] the bound 2¢, instead of ¢, is given for
the log-concave case).

Proof: Let z; = z, + (h(m) — h(z,))/h/(z,) be the intersection between the center part and the
right tail. Then the area below the dominating curve at the right hand side of m is



o= fm) @i = m) + [T (o) + () (@ - 2,) da

which can be simplified to

v = f(m)(zy —m) + (f(m)(h(m) — h(z:)) — F(h(m)))/F (z7).
The derivative of this expression with respect to z; is %(f(m)(h(m) —h(z,)) — F(h(m)));

o
setting it equal to zero gives (*). Due to the T-concavity we have h”(z) < 0 and thus it is easy to
check that the derivative is nonpositive for z, smaller than the solution of (*) and nonnegative
for z, larger than that solution, which proves that we have a global maximum. As T-concavity
implies continuity of the density and as the support of f is unbounded it is obvious that there
is always a point that fulfills (). Substituting this point into v, results in f(m)(z, — m) which
is the area below the curve in the right sided case, in the two sided we add the left area and get
Fm) (@, — ).

Now we proof that f(m)(z, —m) < t, in the monotone case for all T-concave distributions.
Without loss of generality we restrict ourselves to the class with m = 0 and f(0) = 1 as any
density can be transformed into this class by relocating and rescaling it. Now we construct the 7'-
concave function g(z) = T~ (kz +T(1)) for 0 < x. We choose k and t, such that [/° g(z)dz = 1
and [;° g(z) dz = t,. After integration we get F(kt, +T'(1)) — F(T(1)) = k and w =1,
which is solved by k = F (—=F(T'(1) + T(1)) — F(T(1)).

For an arbitrary f in our class T-concavity and the definition of g imply that f(¢,) < g(t,) =
T Yk-t,+T(1)) =T Y(=F(T(1))+7T(1)) = T *(h(0)— F(T(1))) which implies for the optimal
choice: x, < t,; as f(0) =1 we have v, < t, which establishes the monotone case.

For the two-sided case let us denote the probability P(X < m) with p. It is then obvious from the
above that the area below the dominating curve left of m for the optimal z; is always bounded
by t,p the area right of m is bounded by t,(1 — p) which completes the proof. O

Theorem 1 gives the optimal choice of the points of contact for the case of unbounded support.
In addition it implies that the expected number of iterations of Algorithm TDR is uniformly
bounded over the class of all T-concave densities with arbitrary support (if there is no point
fulfilling condition (x) take the border of the support). This makes Algorithm TDR a good
candidate for an automatic algorithm. But choosing z; and z, in a set-up step by solving
condition (*) can be very time consuming. So we give the following simple choice for z; and z,
which guarantees the uniform boundedness as well. (In [6] p 304 the same choice for log-concave
distributions is called minimax approach.)

Theorem 2: The choice of z, = m+1t,/f(m) with ¢, as in Theorem 1 implies that the expected
number of iterations in Algorithm TDR is lower or equal ¢, for arbitrary monotone T-concave
distributions.

With the choice z; = m — t,/f(m), , = m + t,/f(m), the number of iterations of Algorithm
TDR is lower or equal 2t, for arbitrary T-concave distributions.

Proof: Following the proof of Theorem 1 we compute the area below the dominating curve for
the monotone case. In the simplified expression of v, it is easy to see that v, < f(m)(z, —m)
for the case that x, is larger than the optimal z,. The choice z, = m + t,/f(m) is the rescaled
and relocated version of ¢, in the last part of the proof of Theorem 1. Following the arguments
there it is obvious that the optimal z, is always lower or equal m + t,/f(m) which completes
the proof for the monotone case. For the two-sided case the bound is simply multiplied by two.
O

Remark: For the case that x, or z; are not in the support of f(z) leave away the left or right
tail part (set v; < 0 or v, < 0 in Algorithm TDR).



Remark: It is easy to see that for the case that p = [ f(z) dz is known the choice z; = m —
top/f(m) and z, = m+t,(1—p)/f(m) yields an expected number of iterations which is bounded
by t, for any T-concave distribution. This is especially useful for symmetric distributions.

For the case of bounded support the optimal choice of z; and z, is much more difficult and was
entirely neglected in [6]. A necessary condition for optimality is given in Theorem 3.

Theorem 3: Let f(z) be a T-concave monotone density on (0,a) with mode at 0. A necessary
(but generally not sufficient) condition for = x, to minimize the expected number of iterations
of Algorithm TDR is:

F(m)(h(m) —h(z)) — F (h(m)) + F (h(z) + 1 () (a —z)) = b’ (&) (a—2)T " (h(z) + 1 (z) (a—=)) = 0

Proof: area = f(m)(z; —m)+ [, T (h(x,) + W (x,)(z — z,)) dz is simplified and its derivative
with respect to z, set equal to 0. O

3. The choice of the Transformation

Among the possible transformations that fulfill the conditions a) to d) of the previous section
we restrict our attention to the class T, for —1 < ¢ < 0. Ty(z) = log(z) was the transformation
where transformed density rejection started from (see Section 1 and the references given there),
Te(x) = —z¢ for —1 < ¢ < 0 is an important generalization. The two most important special
cases for implementation on a computer are of course Ty and T_ /5 = ~1/Jras T, T ' F
and F~! are so simple in these cases. Using transformation 7, the setup of Algorithm TDR
constructs a dominating density with constant center and tails that behave like z/¢ for ¢ < 0
and like e ® for ¢ = 0. For the case that f is two times differentiable the condition for 7,-
concavity is f”(z) + (¢ — 1)f'(z)?/f(z) < 0 Vz in the support of f, which implies that any
Tp-concave (i.e log-concave) density is T,-concave or more generally that any 7¢,-concave density
is T¢,-concave for ¢; < co. Examples for standard distributions that are T 4 /2-concave but not
log-concave include the t-family, the generalized inverse Gaussian distribution for A < 1 and the
Pearson VI distribution. Details are contained in Table 1 which gives for a variety of unimodal
continuous distributions the transformation 7, which defines the smallest class of T,-concavity
the distribution falls into. Distributions which have a simple inverse cumulative distribution
function (e.g. Weibull and Pareto distribution) are no problem for random variate generation
and were therefore left out. (More information about the distributions contained in Table 3 is
given e.g. in [12], for the last distribution see [13] or [3].)

Table 1
Name of distribution density proportional to parameters T-concave for
Normal e T logarithm
Gamma z¢ e ® a>1 logarithm
Beta 2011 — )Pt a,b>1 logarithm
S _afl
Student’s t (1+2) ° a>0 c= Lk
Pearson VI (or beta-prime) % a>1 c= 1__+1b
Perks m a>—2 logarithm
> -

Generalized inverse Gaussian g le~(wW/2)(@+1/7) >\>\>_0T,ww2>0(.)5 lsilrit(})lgl

For the class of transformations 7, we have defined above it is easy to verify that multiplying a
density with a constant factor leads to the same factor in the dominating function constructed;
everything else remains unchanged as long as the same points of contact are used. Therefore it



is enough for Algorithm TDR to know the densities up to proportionality. To facilitate the use
of Algorithm TDR Table 2 contains what we need to know about the three transformations.

Table 2
‘ T(x) H Rt - R: log(z) ‘ Rt - R : —g° ‘ —12 ‘
T '(z) |R— R": ¢ R~ — R*: (—z)!¢ 72
FYz) | Rt - R: log(z) | Rt - R : (z(1+ l/c))IC? —1/x
(*) f(zy) = f(m)/e f(zr) = f(m) (CJFLI)Z F(z,) = f(m)/4
to ﬁ - 1582 ﬁ 2
- 17ch ¢

Line (%) of Table 2 corresponds to Theorem 1 and tells us how to place the points of contact
to minimize the area below the dominating curve. For this choice ¢, is the upper bound of
the expected number of iterations necessary in Algorithm TDR for an arbitrary 7T-concave
distribution. It is obvious that for a fixed distribution the area below the dominating curve
with optimal points of contact is lowest for the transformation with the largest ¢ possible.
Therefore Ty gives the best fit for log-concave distributions. As an example Table 3 gives for
some standard distributions and the transformations Ty and 7"/, the optimal points of contact
and the expected number of iterations a.

Table 3
distribution |m | T | T Ty | a | topt | tropt |
log —V2 V2 1.1284 | 0.5642 | 0.5642

1
norma U 7T, [=/os(T6) | /og(T6) | 1.3256 | 0.6643 | 0.6643

0.1586 3.1462 | 1.0881
0.3162 3.1462 | 1.0779 | 0.2516 | 0.7859
T 0.1018 3.6926 | 1.3066
—1/2 0.3243 3.6926 | 1.2816 | 0.2486 | 0.9906
13.483 25.848 | 1.1264
13.508 25.848 | 1.1264 | 0.5004 | 0.6240
T 12.635 27.210 | 1.3065
—1/2 13.221 27.210 | 1.3010 | 0.5266 | 0.7481
0.0619 0.7260 | 1.1392
0.1159 0.6760 | 1.1163 | 0.3866 | 0.6092
T 0.0402 0.7824 |1.2324
—1/2 0.1187 0.6717 | 1.1460 | 0.3815 | 0.6015
t a=1 [0 T_1 /9 —V3 V3 1.1027 | 0.5513 | 0.5513
T 15 | —1.6931 1.6931 | 1.3176 | 0.6588 | 0.6588
Ty | —1.4491 1.4491 | 1.1278 [ 0.5639 | 0.5639

log
gamma | a =2 |1

log
gamma | ¢ = 20 | 19

log

beta 1/3

The results of Table 3 show the good fit of the dominating curve for the log-concave distributions
when log is used as transformation but for 7_;/, the results are not so bad as well. Thus
Algorithm TDR with T_;/, can be faster than the logarithmic version even for log-concave
distributions as T~', F and F~' are more easy to compute for T_y/o. But the main advantage
of T'_ /5 is the fact that it is applicable for a wider range of distributions. For the case of bounded
support we computed the suboptimal points according to () (upper line) and the optimal points
according to Theorem 3 (lower line). The difference between optimal and suboptimal solution
is larger for T,/ than for the logarithm. Interesting is the fact that in the case of bounded
support the optimal point of contact is in most cases nearer to the mode for T_; /5 than for the
logarithm, in the unbounded case it is always the other way round.



As the ratio of uniforms method can be interpreted as table-mountain rejection (see for example
[8] ) and we use a dominating density with table-mountain shape as well it seems in place here
to compare transformed density rejection and ratio of uniforms. The standard ratio of uniforms
method first suggested in [15] must be compared with Algorithm TDR with T_;,, as both
methods use table-mountains with tails like 1/z2. Tt is easy to see that the expected number of
iterations « for TDR with optimal points of contact is for a fixed distribution lower than for the
ratio of uniforms method as this method is restricted to table mountains where the area below
the center part equals the area below the tails. For the normal distribution the difference is small
(=1.3286 compared with @=1.3688) but for the Cauchy distribution it is remarkable (1.1027 to
1.2732). Similar considerations can be made for generalizations of the ratio of uniforms method
suggested in [20] (also discussed in [8] and "rediscovered” in [21]) when compared with TDR
together with our family of transformations T.: TDR can select the dominating density in a
wider class of table-mountains and the optimal choice thus leads to a lower a.

4. A universal algorithm

Now we want to use the results from the previous sections to construct a universal or automatic
algorithm that is applicable to all T-concave distributions with given mode and density. Due to
the wider range of possible applications and the simplicity of the required functions we restrict
ourselves to the case of T_;/,(z) = —1/+/z, of course the same could be done for the logarithm
or T, with arbitrary ¢ in almost the same way. The main idea of our algorithm follows of course
Algorithm TDR. (for T, T~!, F and F~! we take the last column of Table 2). The only thing
that is left open in Algorithm TDR is the choice of z; and z,. One possibility would be to use
the result of Theorem 2, a second one to choose the points of contact by solving the condition
(x) of Table 2 numerically which of course results in a better fit of the dominating distribution
but is not optimal for the case of bounded support. Depending on the application it can be
more important to minimize the execution time for a fixed distribution with fixed parameters
or to keep the setup as short as possible. As there are very fast table methods with relatively
long setup available ([1], [17], [6] chapter VII) we will use the approach based on Theorem 2 to
obtain an algorithm with moderate setup and good speed for fixed parameters. On the opposite
extreme are the black box methods of [6] which need almost no setup but are quite slow.

The remark after Theorem 2 shows that for the case that the density has mass on both sides of
the mode the choice z; = m—t,/f(m), , = m+1t,/f(m) (t, = 2) is much too far away from the
mode. Table 3 gives the optimal values #, for z; in the column #/,y, those for z, in the column
tropt. SO we suggest to start with a constant 7, = ¢; smaller than one and to compute the area
below the dominating curve. If it is larger than 4 we take t,=2 according to Theorem 2. The
choice of t; can vary according to the distributions we are mainly interested in. We suggest the
optimal value of the normal distribution ¢; = 0.664 which is good for all symmetric or nearly
symmetric distributions and not so bad for asymmetric distributions as well. We tested it for
the gamma, beta and t-distribution for many different parameters and the expected number of
iterations o was always below 1.6, for most of the nearly symmetric distributions it was close to
1.32.

For the setup of Algorithm TDR it is necessary to compute the derivative of h(z) in z; and
z,. It can be inconvenient or slow to code the derivative of h but it is not necessary. Instead of
the tangent of i in the point z; we can take the line through the point (z;, h(z; + A)) with the
ascent (h(xz; + A) — h(x;))/A. Due to the T-concavity of h it is always greater than or equal
to h for arbitrary A > 0. For x, we can do the same with —A. There are of course numerical
difficulties if A is chosen too small. The details of a variant that guarantees that not more than
5 digits are lost are contained in the below algorithm step 1.3 and 1.4. It is based on the fact
that h'(z;) is smaller than or equal to the ascent of the line connecting z; and the mode (called
al). (The exponent of the constant 1075 gives the maximal number of (decimal) digits that can
be lost due to cancellation. It should be changed if floating point numbers with less than 10



digits precision are used.)

One detail we have not explained yet refers to the case when z; and/or z, lie outside the support
of the distribution and one or both tail-parts are therefore omitted. As the algorithm is slowed
down considerably due to the missing squeeze we decided to define the missing point just for
the squeeze with the distance between the point and m is 60 percent of the distance between m

and the border of the support.

Now we are ready to give the details of a universal algorithm for 7T_; ;-concave distributions

with given mode and computable density f(z).

Algorithm UTDR

1:
1.0:

1.1:
1.2:

1.3:

1.4:

2.1:

2.2:

[Set-up]

Set m <— mode of the distribution, f,, < f(m), hym < —1./V/fm,
Set i; < inf{z|f(z) > 0}, i, - sup{z|f(z) > 0},

if (i = —00) set t; «+ 0 else set #; + 1,
if (i, = 00) set ¢, « 0 else set ¢, « 1.
Set ¢ + 0.664.

¢4 ¢/ fm, T < m —c¢, Tp < m+c.

If () =1 and z; < %))
set by < 15, v; < 0,
if (iy < m) set z; <= m + (4, —m) * 0.6 and

s 4= (b + 1./3/f (1)) [ (m — @)

else set gy < —1//f(z1), st ¢ (hm — 1)/ (m — 1),
A < max(|a], —=gi/s1) - 107°
yr < =1/ fle+ D), ap = (g — 3) /A
Set by < xy + (hm — y1)/ay, di < yi — ay * zy,
U] —1/(al * hm), Ccp < vy,
if (tl = 1) set v < vy + 1/(0,[ * (al * 1) +dl)).

If (t, =1 and z, > i)
set by < 4,0, < 0,
if (iy > m) set z, <~ m + (i, —m) % 0.6 and

sr ¢ (hm + L./\/ f(zr))/(m — z7).
else set g, < —1/\/f(x), 8y < (hm — Ur)/(m — ),

A+ max(|xr|7gr/3r) : 1075

Yr _1/\/ f(ajr - A)a Qp < (gr - yr)/A

Set by < zp + (hm — yr)/ar, dr < Ypr — ay * T,
vy < 1/(ay * hy,), ¢ < vy,

if (t, = 1) set v, < v, — 1/(ay(ay x iy +d;)).

Set ve < (by — by) * fin, Vie < V) + V¢, Vg < Ve + V.
If (vy > 4) set ¢ + 2 and go to step 1.1.

: Generate a uniform random number U and set U < U * vy.

If (U< ) set X < —dyfa;+1/(a? (U — 1)), by + (ar % (U —¢1))%
Else if (U < wvy.) set X < (U —vy) % (by — by)/ve + by, Uy < fim.
Else set X < —d,./a, — 1/(a? x (U — vje — ¢;)), by < (ap % (U — vje —

Generate a uniform random number V and set V < V * [,.



2.3: If (X <m)
if (X >z and V * (hy — (m — X) x 57)? < 1) return X.
Else if (X <z, and V * (hy, — (m — X) * 5,)? < 1) return X.
If (V < f(X)) return X,
else go to step 2.

5. Computational experience

We coded Algorithm UTDR in C and tested it for the normal, gamma, beta and t distribution
on our DEC-station 5000/240. First we compared it with an implementation of Algorithm TDRS
with T=log. Although the expected number of iterations is lower for the logarithm (see Table
3) UTDR was about ten percent faster for every distribution. Among the universal methods
suggested in literature no one can be applied to such a large family of distributions if only the
mode and the density are known. So we compared the execution times of UTDR with the black
box algorithm for log-concave densities as explained in [6] p. 292 which is quite simple and short
and needs almost no setup. But on the other hand the expected number of iterations « is four
for that algorithm (compared with about 1.33 for UTDR) and it is about four times slower
than UTDR for a fixed distribution. For the case that the distribution (or the parameters of
the distribution) change after every call the algorithm of Devroye is slightly faster than UTDR.
due to the slow setup of UTDR which takes about six times longer than the generation of one
random variate. If two samples of the same distribution are needed UTDR is already faster than
Devroye’s algorithm.

If we compare UTDR with specialized algorithms for the four distributions the fastest and most
complicated generators coded in a high level language (see eg. [10] for the normal, [2] and [19],
for the gamma, [18], and [22] for the beta and [16] for the t-distribution) are about three times
faster for the normal distribution and two times faster for the gamma, beta and t-distribution.
Short and simple methods for a single distribution (e.g. [4] for the gamma and [5] for the beta
distribution) have about the same speed as Algorithm UTDR if we compare the fixed parameter
case. For the case that the parameters vary after every call UTDR is not competitive in terms
of speed. Contrary to Devroye’s algorithm UTDR works well when the density is only known
up to a constant factor that is not too far away from one (for example between 0.5 and 2). This
fact is of importance when we need samples from truncated standard distributions. For example
to generate a standard normal deviate truncated to the interval (-0.5,2) it is not necessary to
change the code of Algorithm UTDR or the subprogram that delivers f(x), only the borders of
the support must be changed.

6. Conclusions

Transformed density rejection is a simple method that can be applied to a variety of continuous
distributions. It uses a dominating density with the shape of a table mountain and is more
flexible than ratio of uniforms and its generalizations. Thus it is easy to find optimal domina-
ting distributions with a low expected number of iterations. Transformed density rejection is
especially well suited to design universal algorithms for a very large class of bounded unimo-
dal densities. The execution times for these universal algorithms are uniformly bounded over
the whole class and comparable with algorithms designed for a specific distribution. Due to
the important advantages of universal algorithms — one program of moderate length coded and
debugged only once can do more than a collection of programs — we are convinced that the
suggested Algorithm UTDR could replace the specialized algorithms for most applications thus
gaining flexibility without loosing much speed.
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